Research Portal

July 1, 2022

Environmental Determinants of Unscheduled Residential Outages in the Electrical Power Distribution of Phoenix, Arizona

Maliszewski, Paul J.; Larson, Elisabeth K.; Perrings, Charles. (2012). Environmental Determinants of Unscheduled Residential Outages in the Electrical Power Distribution of Phoenix, Arizona. Reliability Engineering & System Safety, 99, 161 – 171.

View Publication

Abstract

The sustainability of power infrastructures depends on their reliability. One test of the reliability of an infrastructure is its ability to function reliably in extreme environmental conditions. Effective planning for reliable electrical systems requires knowledge of unscheduled outage sources, including environmental and social factors. Despite many studies on the vulnerability of infrastructure systems, the effect of interacting environmental and infrastructural conditions on the reliability of urban residential power distribution remains an understudied problem. We model electric interruptions using outage data between the years of 2002 and 2005 across Phoenix, Arizona. Consistent with perceptions of increased exposure, overhead power lines positively correlate with unscheduled outages indicating underground cables are more resistant to failure. In the presence of overhead lines, the interaction between birds and vegetation as well as proximity to nearest desert areas and lakes are positive driving factors explaining much of the variation in unscheduled outages. Closeness to the nearest arterial road and the interaction between housing square footage and temperature are also significantly positive. A spatial error model was found to provide the best fit to the data. Resultant findings are useful for understanding and improving electrical infrastructure reliability. (C) 2011 Elsevier Ltd. All rights reserved.

Keywords

Determinants (mathematics); Electric Power Distribution; Reliability In Engineering; Social Factors; Temperature Effect; Phoenix (ariz.); Arizona; Distribution; Electricity; Interruption; Outage; Reliability; System Reliability Assessment; Maintenance; Overhead; Model; Interruptions; Regression; Flashover; Failures; Performance; Hurricanes