Ottesen, Jeffrey L., & Migliaccio, Giovanni (2023). Use of Predictive Models for Labor-Productivity Loss in Settling Disputes. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 15(1).
View Publication
Abstract
Given inherent difficulties in construction, optimizing labor efficiencies is paramount to project success. Research described in this article conducted demonstrates that an analysis of planned activities in a critical path methodology (CPM) schedule may be used to forecast future productivity inefficiencies. Specifically, this study relies on the concept of CPM schedule’s density, which is defined as the number of overlapping like-trade activities on any given workday. This metric is directly related to the required labor resources required to complete that work within the activities’ planned durations. Schedule density increases where more planned activities overlap with each other; for instance, occurrence of such increases is common when the schedule is accelerated. Regression models were derived using metrics drawn from CPM schedule updates’ activities and durations and compared to actual labor productivity experienced. Strong correlation findings support development of predictive models that quantify potential labor inefficiencies before they occur. However, the question remains as to the strength and applicability of predictive models in formal litigation. This paper presents findings of this research and discusses how such findings may be used to facilitate settlement in dispute resolution procedures.
Keywords
Migliaccio, Giovanni C., Gebken, Richard J., Fernandez, Luis R., & Osmanbhoy, Natasha (2022). Emergent Subcontracting Models in the US Construction Industry. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 14(4).
View Publication
Abstract
Prime contracting models for engineering and construction projects are described extensively in the literature, but models between prime contractors and subcontractors are less well known. This study examined the established and evolving subcontracting models in the US construction industry to not only document their utilization but also investigate their advantages and disadvantages when employed. The research followed a two-phase/two-step approach. During Phase 1, the authors completed a regionally based study to identify subcontracting practices in the Pacific Northwest. As part of Phase 2, the study was expanded across the United States to gain a greater understanding of each of the identified subcontracting models, including advantages, disadvantages, and variations. Both phases were organized into two steps: (1) an online survey instrument was sent to professionals with either general or specialty contracting firms, and (2) follow-up semistructured interviews were conducted with selected survey respondents to better evaluate each subcontracting model. The authors found that five subcontracting models address the most common scenarios and the characteristics of each are familiar to the nationwide participant sample. There are subtle variations to the main five models that are being employed to varying degrees across the country. The impetus for these variations appears to be founded on the need to find better contractual arrangements and that subcontracting practices are dynamic by nature. Although most of the participants were from western and central divisions of the US Census Bureau geographical classification, participants from all geographic areas participated in the study. Increasing knowledge on how project delivery systems may affect disputes and claims or conflicts and legal issues of procurement systems, this article uniquely contributes to defining a taxonomy of subcontracting models while giving insights into the current and emerging trends in subcontracting practices, including how subcontractors are integrated into a project team.
Migliaccio, Giovanni C., & Shrestha, Pramen P. (Eds.). (2023). Building a Body of Knowledge in Construction Project Delivery, Procurement and Contracting. World Scientific.
View Publication
Abstract
This book aims to consolidate, structure and articulate collective knowledge on construction project delivery, procurement and contracting, so that it can serve as a gateway to the contiguous topics of construction project delivery. In addition to supporting the education of student researchers, as well as broadening and deepening the knowledge of practitioners, the book is also intended to serve as a foundation for future education and as a reference book. Academicians can use it to benchmark and support their research and also as a textbook for an undergraduate or graduate course on the topics of project delivery, procurement and contracting.
Keywords
Construction; Engineering; Project Delivery; Procurement; Contracting
Gatti, U.C.; Migliaccio, G.C.; Laird, L. (2014). Design Management in Design-Build Megaprojects: SR 99 Bored Tunnel Case Study. Practice Periodical On Structural Design And Construction, 19(1), 148-58.
View Publication
Abstract
The increasing use of the design-build project delivery method has resulted in it now being one of the most popular nontraditional methods for delivering road, bridge, mass transit, and rail projects in the United States. However, although the use of design-build is widespread, there remains a substantial lack of information about how to effectively plan and implement design management procedures for design-build transportation projects. In particular, transportation agencies lack information about how to shape appropriate design management roles for various contractual parties and to manage design activities for design-build megaprojects. To fill this gap, this paper presents a case study of the SR 99 Bored Tunnel project in Seattle, Washington. It provides detailed information on how the owner, the Washington State DOT (WSDOT), incorporated design management procedures into its requirements and how the design-builder, Seattle Tunnel Partners, implemented them within its project management processes.
Keywords
Boring; Design Engineering; Project Management; Tunnels; Design-build Megaproject; Design-build Project Delivery Method; Road Project; Bridge Project; Mass Transit Project; Rail Project; United States; Design-build Transportation Project; Transportation Agency; Sr 99 Bored Tunnel Project; Seattle; Washington State Dot; Wsdot; Design Management; Project Management Process
Lin, Ken-yu; Lee, Wonil; Azari, Rahman; Migliaccio, Giovanni C. (2018). Training Of Low-literacy And Low-english-proficiency Hispanic Workers On Construction Fall Fatality. Journal Of Management In Engineering, 34(2).
View Publication
Abstract
The construction industry has made extensive efforts to improve the safety of its labor force through various approaches, including training. However, many construction workers in the United States are recent immigrants who lack English proficiency and do not possess sufficient literacy levels in their own language for training comprehension. This reduces the effectiveness of traditional text-dominated translated training materials, which depend on both literacy and proficiency in a language. Thus, in this study, the authors used three-dimensional (3D) visualization to overcome the communication barriers that hinder effective safety training for low-literacy (LL) and low-English-proficiency (LEP) construction workers. This article summarizes the contributions of a study sponsored by the Occupational Safety and Health Administration (OSHA) Susan Harwood Training Grant Program; it describes the methodology to develop scenario-based 3D training materials on fall safety for LL and LEP workers and to validate the effectiveness of the materials. The results show that 3D training materials improve interaction between trainer and trainee during safety training, facilitate learning processes, and can overcome some of the communication barriers that hinder effective safety training. (c) 2017 American Society of Civil Engineers.
Keywords
Chemical Hazards; Computer Based Training; Construction Industry; Hazardous Materials; Industrial Training; Occupational Health; Occupational Safety; Personnel; Safety; Low-literacy; Low-english-proficiency Hispanic Workers; Construction Fall Fatality; Extensive Efforts; Labor Force; Construction Workers; English Proficiency; Sufficient Literacy Levels; Training Comprehension; Training Materials; Three-dimensional Visualization; Communication Barriers; Effective Safety Training; Health Administration Susan Harwood Training Grant Program; Fall Safety; Occupational Injuries; United-states; Industry; Health; Education; Issues; Occupational Health And Safety; Training; Visualization; Fall Protection; Case Study
Gatti, Umberto C.; El-anwar, Omar; Migliaccio, Giovanni C.; Lin, Ken-yu; Medina, Yvonne. (2014). Quantifying The Impacts Of Failures Of Departments Of Transportation Building Systems On Road System Users. Transportation Research Record, 2440, 85 – 93.
View Publication
Abstract
Because of the financial crisis of 2007 to 2008 and the subsequent economic downturn, funding for transportation agencies has been consistently reduced. This lack of funds prevents the building assets of transportation agencies from being efficiently maintained, so failures may occur that discontinue employees' operations and activities and affect transportation system users. Thus, to maximize the use of available funding, it is compelling to create innovative tools and techniques capable of estimating how potential failures can affect employees' activities and, eventually, transportation system users. Facility managers and decision makers could use such estimates to make decisions on maintenance of building assets that would minimize the risks of disruptions to employees and transportation system users. Among the capital assets of the Washington State Department of Transportation (DOT), transportation equipment fund (TEF) shops are crucial in ensuring timely and effective care and maintenance of the majority of state vehicles and equipment Therefore, any disruption of the operations of TEF shop facilities could significantly affect not only the Washington State DOT's vehicles and equipment maintenance but also the department's ability to fulfill its core mission. Given the importance of TEF shops, this exploratory case study investigates the failures that have occurred or are likely to occur in these facilities and employs discrete-event simulation to quantify the consequences of such failures on the shop activities and road users.
Keywords
Simulation
Lee, Wonil; Migliaccio, Giovanni C.; Lin, Ken-Yu; Seto, Edmund Y. W. (2020). Workforce Development: Understanding Task-Level Job Demands-Resources, Burnout, and Performance in Unskilled Construction Workers. Safety Science, 123.
View Publication
Abstract
This study examines how task demands and personal resources affect unskilled construction worker productivity and safety performance. It extends the job demands-resources (JD-R) burnout model to show how job characteristics interact with burnout to influence performance. A modified model was designed to measure burnout, with exhaustion and disengagement among unskilled construction workers taken into consideration. An observational study was conducted in a laboratory environment to test the research hypotheses and assess the prediction accuracies of outcome constructs. Twenty-two subjects participated in multiple experiments designed to expose them to varying levels of task-demands and to record their personal resources as they performed common construction material-handling tasks. Specifically, both surveys and physiological measurements using wearable sensors were used to operationalize the model constructs. Moreover, partial least squares structural equation modeling was applied to analyze data collected at the task and individual levels. Exhaustion and disengagement exhibited different relationships with productivity and safety performance outcomes as measured by unit rate productivity and ergonomic behavior, respectively. Subjects with high burnout and high engagement showed high productivity but low safety performance. Thus, exhausted workers stand a greater chance of failing to comply with safety. As the sample and the task performed in the experiment do not cover the experience and trade of all construction workers, our findings are limited in their application to entry-level and unskilled workers, whose work is mainly manual material-handling tasks.
Keywords
Construction Workers; Structural Equation Modeling; Job Descriptions; Labor Productivity; Labor Supply; Burnout; Job Demand-resources Model; Partial Least Squares Structural Equation Modeling; Productivity; Safety; Wearable Sensors; Biomechanics; Construction Industry; Ergonomics; Occupational Health; Occupational Safety; Occupational Stress; Personnel; Statistical Analysis; Workforce Development; Understanding Task-level Job Demands-resources; Unskilled Construction Workers; Task Demands; Personal Resources; Unskilled Construction Worker Productivity; Job Demands-resources Burnout Model; Job Characteristics Interact; Exhaustion; Disengagement; Outcome Constructs; Varying Levels; Task-demands; Common Construction Material-handling Tasks; Physiological Measurements; Model Constructs; Individual Levels; Unit Rate Productivity; High Burnout; Low Safety Performance; Exhausted Workers; Entry-level; Unskilled Workers; Manual Material-handling Tasks; Heart-rate-variability; Labor Productivity Trends; Physiological Demands; Emotional Exhaustion; Safety Climate; Role Stress; Engagement; Fatigue; Workload; Task Analysis; Workforce; Level (quantity); Construction Materials; Personnel Management; Materials Handling; Multivariate Statistical Analysis
Gatti, Umberto C.; Schneider, Suzanne; Migliaccio, Giovanni C. (2014). Physiological Condition Monitoring of Construction Workers. Automation In Construction, 44, 227 – 233.
View Publication
Abstract
Monitoring of workers' physiological conditions can potentially enhance construction workforce productivity, safety, and well-being. Recently, Physiological Status Monitors (PSMs) were validated as an accurate technology to assess physiological conditions during typical sport science and medicine testing procedures (e.g., treadmill and cycle ergometer protocols). However, sport science and medicine testing procedures cannot simulate routine construction worker movements in a comprehensive manner. Thus, this paper investigated the validity of two PSMs by comparing their measurements with gold standard laboratory instruments' measurements at rest and during dynamic activities resembling construction workforce's routine activities. Two physiological parameters such as heart rate and breathing rate were considered. Ten apparently healthy subjects participated in the study. One of the PSMs proved to be a viable technology in assessing construction workers' heart rate (correlation coefficient >= 0.74; percentage of differences within +/- 11 bpm >= 84.8%). (C) 2014 Elsevier B.V. All rights reserved,
Keywords
Construction Workers; Labor Supply; Labor Productivity; Well-being; Health Status Indicators; Heart Rate Monitoring; Physiology; Construction Management; Construction Worker; Ergonomics; Occupational Health And Safety; Physiological Status Monitoring Technology; Productivity; Work Physiological Demand; Work Physiology; Construction Industry; Monitoring; Occupational Safety; Medicine Testing; Sport Science; Psm; Physiological Status Monitors; Safety; Construction Workforce Productivity; Workers Monitoring; Physiological Condition Monitoring; Heart-rate Monitors; R-r Intervals; Statistical-methods; Respiratory Rate; Physical Load; Polar S810; Strain; Validity; Reliability; Validation
Shang, Luming; Migliaccio, Giovanni C. (2020). Demystifying Progressive Design Build: Implementation Issues and Lessons Learned through Case Study Analysis. Organization Technology And Management In Construction, 12(1), 2095 – 2108.
View Publication
Abstract
The design-build (DB) project delivery method has been used for several decades in the US construction market. DB contracts are usually awarded on the basis of a multicriteria evaluation, with price as one of the most salient criteria. To ensure the project's success, an owner usually has to invest enough time and effort during scoping and early design to define a program, scope, and budget, ready for procurement and price generation. However, this process can become a burden for the owner and may lengthen the project development duration. As an alternative to the traditional DB, the progressive design-build (PDB) approach permits the selection of the DB team prior to defining the project program and/or budget. PDB has the advantage of maintaining a single point of accountability and allowing team selection based mainly on qualifications, with a limited consideration of price. Under PDB, the selected team works with the project stakeholders during the early design stage, while helping the owner balance scope and budget. However, the key to the effectiveness of PDB is its provision for the ongoing and complete involvement of the owner in the early design phase. Due to the differences between PDB and the other project delivery methods (e.g., traditional DB), project teams must carefully consider several factors to ensure its successful implementation. The research team conducted a case study of the University of Washington's pilot PDB project to complete the West Campus Utility Plant (WCUP). This paper carefully explores and summarizes the project's entire delivery process (e.g., planning, solicitation, design, and construction), its organizational structures, and the project performance outcomes. The lessons learned from the WCUP project will contribute to best practices for future PDB implementation.
Keywords
Progressive Design Build; Project Delivery Method
Gatti, Umberto C.; Migliaccio, Giovanni C.; Bogus, Susan M.; Schneider, Suzanne(3). (2014). An Exploratory Study of the Relationship between Construction Workforce Physical Strain and Task Level Productivity. Construction Management And Economics, 32(6), 548 – 564.
View Publication
Abstract
The monitoring of construction workforce physical strain can be a valuable management strategy in improving workforce productivity, safety, health, and quality of work. Nevertheless, clear relationships between workforce performance and physical strain have yet to be established. An exploratory investigation of the relationship between task level productivity and physical strain was conducted. Nine participants individually performed a four-hour simulated construction task while a wearable physiological status monitor continuously assessed their physiological condition. Heart rate, relative heart rate, and breathing rate were utilized as predictors of physical strain, and task level-single factor productivity was used as an index of productivity. Numerous regression models were generated using the collected data. This investigation initially unsuccessfully attempted to establish a relationship between physiological condition and productivity at the individual worker level. However, an analysis of the regression models showed that there is a relationship between productivity and either heart rate or relative heart rate at the group level, and that this relationship is parabolic. Breathing rate was proved to not be a significant predictor of productivity. Research results significantly improve understanding of the relationship between work physiology and task productivity. Researchers and practitioners may use the tested monitoring devices, analysis methods, and results to design further applied studies and to improve workforce productivity. © 2013 © 2013 Taylor & Francis.
Keywords
Heart; Industrial Hygiene; Occupational Risks; Personnel; Regression Analysis; Construction Workforces; Management Strategies; Occupational Health And Safety; Operations Management; Physiological Condition; Physiological Status Monitors; Work Physiology; Workforce