Skip to content

Say Where You Sample: Increasing Site Selection Transparency in Urban Ecology

Dyson, Karen; Dawwas, Emad; Poulton Kamakura, Renata; Alberti, Marina; Fuentes, Tracy L. (2023). Say Where You Sample: Increasing Site Selection Transparency in Urban Ecology. Ecosphere, 14(3).

View Publication

Abstract

Urban ecological studies have the potential to expand our understanding of socioecological systems beyond that of an individual city or region. Cross-comparative empirical work and synthesis are imperative to develop a general urban ecological theory. This can be achieved only if studies are replicable and generalizable. Transparency in methods reporting facilitates generalizability and replicability by documenting the decisions scientists make during the various steps of research design; this is particularly true for sampling design and selection because of their impact on both internal and external validity and the potential to unintentionally introduce bias. Three interdependent aspects of sample design are study sample selection (e.g., specific organisms, soils, or water), sample specification (measurement of specific variable of interest), and site selection (locations sampled). Of these, documentation of site selection—the where component of sample design—is underrepresented in the urban ecology literature. Using a stratified random sample of 158 papers from 12 major urban ecology journals, we investigated how researchers selected study sites in urban ecosystems and evaluated whether their site selection methods were transparent. We extracted data from these papers using a 50-question, theory-based questionnaire and a multiple-reviewer approach. Our sample represented almost 45 years of urban ecology research across 40 different countries. We found that more than 80% of the papers we read were not transparent in their site selection methodology. We do not believe site selection methods are replicable for 70% of the papers read. Key weaknesses include incomplete descriptions of populations and sampling frames, urban gradients, sample selection methods, and property access. Low transparency in reporting the where methodology limits urban ecologists' ability to assess the internal and external validity of studies' findings and to replicate published studies; it also limits the generalizability of existing studies. The challenges of low transparency are particularly relevant in urban ecology, a field where standard protocols for site selection and delineation are still being developed. These limitations interfere with the fields' ability to build theory and inform policy. We conclude by offering a set of recommendations to increase transparency, replicability, and generalizability.

Keywords

external validity, field ecology, generalizability, internal validity, replication, reproducibility, sampling design, site selection, theory building, transparency

Revitalizing Urban Waterfronts: Identifying Indicators For Human Well-being

Yocom, Ken P.; Andrews, Leann; Faghin, Nicole; Dyson, Karen; Leschine, Thomas; Nam, Jungho. (2016). Revitalizing Urban Waterfronts: Identifying Indicators For Human Well-being. Aims Environmental Science, 3(3), 456 – 473.

View Publication

Abstract

Waterfront cities worldwide have begun the process of regenerating and developing their formerly industrial waterfronts into land uses that reflect a post-industrial economic vision of mixed urban uses supporting a diverse economy and wide range of infrastructure. These revitalization projects require distinct planning and management tactics to determine project-defined successes inclusive of economic, ecological, and human well-being perspectives. While empirically developed templates for economic and ecological measures exist, the multi-dimensionality and subjective nature of human well-being is more difficult to assess. Through an extensive review of indicator frameworks and expert interviews, our research proposes an organizational, yet adaptable, human well-being indicators framework for the management and development of urban waterfront revitalization projects. We analyze the framework through the lens of two waterfront projects in the Puget Sound region of the United States and identify several key factors necessary to developing project-specific human well-being indicator frameworks for urban waterfront revitalization projects. These factors include: initially specify goals and objectives of a given project, acknowledge contextual conditions including prospective land uses and projected users, identify the stage of development or management to use appropriate indicators for that stage, and develop and utilize data sources that are at a similar scale to the size of the project.

Keywords

Quality-of-life; City Waterfront; Dimensions; Framework; Science; Policy; Urban Waterfront Revitalization; Human Well-being; Indicators; Design And Management

The Ecological and Evolutionary Consequences of Systemic Racism in Urban Environments

Schell, Christopher J.; Dyson, Karen; Fuentes, Tracy L.; Des Roches, Simone; Harris, Nyeema C.; Miller, Danica Sterud; Woelfle-Erskine, Cleo A.; Lambert, Max R. (2020). The Ecological and Evolutionary Consequences of Systemic Racism in Urban Environments. Science, 369(6510), 1446.

View Publication

Abstract

Urban areas are dynamic ecological systems defined by interdependent biological, physical, and social components. The emergent structure and heterogeneity of urban landscapes drives biotic outcomes in these areas, and such spatial patterns are often attributed to the unequal stratification of wealth and power in human societies. Despite these patterns, few studies have effectively considered structural inequalities as drivers of ecological and evolutionary outcomes and have instead focused on indicator variables such as neighborhood wealth. In this analysis, we explicitly integrate ecology, evolution, and social processes to emphasize the relationships that bind social inequities-specifically racism-and biological change in urbanized landscapes. We draw on existing research to link racist practices, including residential segregation, to the heterogeneous patterns of flora and fauna observed by urban ecologists. In the future, urban ecology and evolution researchers must consider how systems of racial oppression affect the environmental factors that drive biological change in cities. Conceptual integration of the social and ecological sciences has amassed considerable scholarship in urban ecology over the past few decades, providing a solid foundation for incorporating environmental justice scholarship into urban ecological and evolutionary research. Such an undertaking is necessary to deconstruct urbanization's biophysical patterns and processes, inform equitable and anti-racist initiatives promoting justice in urban conservation, and strengthen community resilience to global environmental change.

Keywords

New-york; Climate-change; Land-cover; Socioeconomic-status; Ecosystem Services; Oxidative Stress; Green Spaces; Gene Flow; Justice; Cities

Urban Landscape Heterogeneity Influences the Relationship Between Tree Canopy and Land Surface Temperature

Jung, Meen Chel; Dyson, Karen; Alberti, Marina. (2021). Urban Landscape Heterogeneity Influences the Relationship Between Tree Canopy and Land Surface Temperature. Urban Forestry & Urban Greening, 57.

View Publication

Abstract

Urban trees play a key role in alleviating elevated summertime land surface temperatures in cities. However, urban landscape influences the capacity of urban trees to mitigate higher temperatures. We propose that both developed land characteristics and tree cover should be considered to accurately estimate the mitigation effects of canopy cover. We subclassified original land cover based on the canopy cover ratio to capture the within-land cover heterogeneity. We selected two coastal cities with different summertime climatic conditions: Seattle, Washington, USA, and Baltimore, Maryland, USA. We used Landsat-based grid cells (30 m x 30 m) as our spatial analytical unit, with corresponding land surface temperature, canopy area, canopy compactness, population size, and National Land Cover Database (NLCD)-based land cover group. We first used grouped boxplots, Kruskal-Wallis H tests, and post-hoc multiple comparison tests to detect the distribution of land surface temperatures by the land cover group. We then introduced statistical models to test the group effects on the relationship between land surface temperatures and canopy cover variables. We found: (1) land surface temperature increases with level of development, (2) land surface temperature decreases with canopy cover level, (3) the magnitude of the mitigation effects from canopy area differs based on development level and current canopy cover, (4) the differing efficacies of canopy area in decreasing land surface temperature follows a nonlinear threshold relationship, and (5) compactness of canopy cover was not significant in reducing the land surface temperature. These findings suggest the importance of considering heterogeneous canopy cover within developed land cover classes in urban heat island research. Tree planting strategies need to consider the nonlinear relationships between tree canopy cover and land surface temperature alongside environmental equity concerns.

Keywords

Extreme Heat Events; Climate-change; Cover Data; Island; Pattern; Cities; Vegetation; Mortality; Phoenix; Impact; Canopy Cover; Environmental Equity; Land Cover; Land Surface Temperature; Mitigation Effect; Area; Canopy; Cells; Climatic Factors; Databases; Heat Island; Landscapes; Multiple Comparison Test; Planting; Population Size; Research; Statistical Models; Summer; Surface Temperature; Testing; Trees; Urban Forestry; Maryland

Global Urban Environmental Change Drives Adaptation in White Clover

Santangelo, James S.; Ness, Rob W.; Cohan, Beata; Fitzpatrick, Connor R.; Innes, Simon G.; Koch, Sophie; Miles, Lindsay S.; Munim, Samreen; Peres-neto, Pedro R.; Prashad, Cindy; Tong, Alex T.; Aguirre, Windsor E.; Akinwole, Philips O.; Alberti, Marina; Alvarez, Jackie; Anderson, Jill T.; Anderson, Joseph J.; Ando, Yoshino; Andrew, Nigel R.; Angeoletto, Fabio; Anstett, Daniel N.; Anstett, Julia; Aoki-goncalves, Felipe; Arietta, A. Z. Andis; Arroyo, Mary T. K.; Austen, Emily J.; Baena-diaz, Fernanda; Barker, Cory A.; Baylis, Howard A.; Beliz, Julia M.; Benitez-mora, Alfonso; Bickford, David; Biedebach, Gabriela; Blackburn, Gwylim S.; Boehm, Mannfred M. A.; Bonser, Stephen P.; Bonte, Dries; Bragger, Jesse R.; Branquinho, Cristina; Brans, Kristien, I; Bresciano, Jorge C.; Brom, Peta D.; Bucharova, Anna; Burt, Briana; Cahill, James F.; Campbell, Katelyn D.; Carlen, Elizabeth J.; Carmona, Diego; Castellanos, Maria Clara; Centenaro, Giada; Chalen, Izan; Chaves, Jaime A.; Chavez-pesqueira, Mariana; Chen, Xiao-yong; Chilton, Angela M.; Chomiak, Kristina M.; Cisneros-heredia, Diego F.; Cisse, Ibrahim K.; Classen, Aimee T.; Comerford, Mattheau S.; Fradinger, Camila Cordoba; Corney, Hannah; Crawford, Andrew J.; Crawford, Kerri M.; Dahirel, Maxime; David, Santiago; De Haan, Robert; Deacon, Nicholas J.; Dean, Clare; Del-val, Ek; Deligiannis, Eleftherios K.; Denney, Derek; Dettlaff, Margarete A.; Dileo, Michelle F.; Ding, Yuan-yuan; Dominguez-lopez, Moises E.; Dominoni, Davide M.; Draud, Savannah L.; Dyson, Karen; Ellers, Jacintha; Espinosa, Carlos, I; Essi, Liliana; Falahati-anbaran, Mohsen; Falcao, Jessica C. F.; Fargo, Hayden T.; Fellowes, Mark D. E.; Fitzpatrick, Raina M.; Flaherty, Leah E.; Flood, Padraic J.; Flores, Maria F.; Fornoni, Juan; Foster, Amy G.; Frost, Christopher J.; Fuentes, Tracy L.; Fulkerson, Justin R.; Gagnon, Edeline; Garbsch, Frauke; Garroway, Colin J.; Gerstein, Aleeza C.; Giasson, Mischa M.; Girdler, E. Binney; Gkelis, Spyros; Godsoe, William; Golemiec, Anneke M.; Golemiec, Mireille; Gonzalez-lagos, Cesar; Gorton, Amanda J.; Gotanda, Kiyoko M.; Granath, Gustaf; Greiner, Stephan; Griffiths, Joanna S.; Grilo, Filipa; Gundel, Pedro E.; Hamilton, Benjamin; Hardin, Joyce M.; He, Tianhua; Heard, Stephen B.; Henriques, Andre F.; Hernandez-poveda, Melissa; Hetherington-rauth, Molly C.; Hill, Sarah J.; Hochuli, Dieter F.; Hodgins, Kathryn A.; Hood, Glen R.; Hopkins, Gareth R.; Hovanes, Katherine A.; Howard, Ava R.; Hubbard, Sierra C.; Ibarra-cerdena, Carlos N.; Iniguez-armijos, Carlos; Jara-arancio, Paola; Jarrett, Benjamin J. M.; Jeannot, Manon; Jimenez-lobato, Vania; Johnson, Mae; Johnson, Oscar; Johnson, Philip P.; Johnson, Reagan; Josephson, Matthew P.; Jung, Meen Chel; Just, Michael G.; Kahilainen, Aapo; Kailing, Otto S.; Karinho-betancourt, Eunice; Karousou, Regina; Kirn, Lauren A.; Kirschbaum, Anna; Laine, Anna-liisa; Lamontagne, Jalene M.; Lampei, Christian; Lara, Carlos; Larson, Erica L.; Lazaro-lobo, Adrian; Le, Jennifer H.; Leandro, Deleon S.; Lee, Christopher; Lei, Yunting; Leon, Carolina A.; Tamara, Manuel E. Lequerica; Levesque, Danica C.; Liao, Wan-jin; Ljubotina, Megan; Locke, Hannah; Lockett, Martin T.; Longo, Tiffany C.; Lundholm, Jeremy T.; Macgillavry, Thomas; Mackin, Christopher R.; Mahmoud, Alex R.; Manju, Isaac A.; Marien, Janine; Martinez, D. Nayeli; Martinez-bartolome, Marina; Meineke, Emily K.; Mendoza-arroyo, Wendy; Merritt, Thomas J. S.; Merritt, Lila Elizabeth L.; Migiani, Giuditta; Minor, Emily S.; Mitchell, Nora; Bazargani, Mitra Mohammadi; Moles, Angela T.; Monk, Julia D.; Moore, Christopher M.; Morales-morales, Paula A.; Moyers, Brook T.; Munoz-rojas, Miriam; Munshi-south, Jason; Murphy, Shannon M.; Murua, Maureen M.; Neila, Melisa; Nikolaidis, Ourania; Njunji, Iva; Nosko, Peter; Nunez-farfan, Juan; Ohgushi, Takayuki; Olsen, Kenneth M.; Opedal, Oystein H.; Ornelas, Cristina; Parachnowitsch, Amy L.; Paratore, Aaron S.; Parody-merino, Angela M.; Paule, Juraj; Paulo, Octavio S.; Pena, Joao Carlos; Pfeiffer, Vera W.; Pinho, Pedro; Piot, Anthony; Porth, Ilga M.; Poulos, Nicholas; Puentes, Adriana; Qu, Jiao; Quintero-vallejo, Estela; Raciti, Steve M.; Raeymaekers, Joost A. M.; Raveala, Krista M.; Rennison, Diana J.; Ribeiro, Milton C.; Richardson, Jonathan L.; Rivas-torres, Gonzalo; Rivera, Benjamin J.; Roddy, Adam B.; Rodriguez-munoz, Erika; Roman, Jose Raul; Rossi, Laura S.; Rowntree, Jennifer K.; Ryan, Travis J.; Salinas, Santiago; Sanders, Nathan J.; Santiago-rosario, Luis Y.; Savage, Amy M.; Scheepens, J. F.; Schilthuizen, Menno; Schneider, Adam C.; Scholier, Tiffany; Scott, Jared L.; Shaheed, Summer A.; Shefferson, Richard P.; Shepard, Caralee A.; Shykoff, Jacqui A.; Silveira, Georgianna; Smith, Alexis D.; Solis-gabriel, Lizet; Soro, Antonella; Spellman, Katie, V; Whitney, Kaitlin Stack; Starke-ottich, Indra; Stephan, Jorg G.; Stephens, Jessica D.; Szulc, Justyna; Szulkin, Marta; Tack, Ayco J. M.; Tamburrino, Italo; Tate, Tayler D.; Tergemina, Emmanuel; Theodorou, Panagiotis; Thompson, Ken A.; Threlfall, Caragh G.; Tinghitella, Robin M.; Toledo-chelala, Lilibeth; Tong, Xin; Uroy, Lea; Utsumi, Shunsuke; Vandegehuchte, Martijn L.; Vanwallendael, Acer; Vidal, Paula M.; Wadgymar, Susana M.; Wang, Ai-ying; Wang, Nian; Warbrick, Montana L.; Whitney, Kenneth D.; Wiesmeier, Miriam; Wiles, J. Tristian; Wu, Jianqiang; Xirocostas, Zoe A.; Yan, Zhaogui; Yao, Jiahe; Yoder, Jeremy B.; Yoshida, Owen; Zhang, Jingxiong; Zhao, Zhigang; Ziter, Carly D.; Zuellig, Matthew P.; Zufall, Rebecca A.; Zurita, Juan E.; Zytynska, Sharon E.; Johnson, Marc T. J. (2022). Global Urban Environmental Change Drives Adaptation in White Clover. Science, 375(6586), 1275+.

View Publication

Abstract

Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural dines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.

Keywords

Surface Temperature Retrieval; Cyanogenesis Clines; Hydrogen-cyanide; Gene Flow; F-st; Evolution; Polymorphism; Emissivity; Discovery; Framework; Drought; Urban Environments; Urbanization; Environmental Changes; Herbivory; Urban Development; Adaptation; Chemical Defense; Urban Areas; Data Collection; Trifolium Repens

Ecological Design For Urban Waterfronts

Dyson, Karen; Yocom, Ken. (2015). Ecological Design For Urban Waterfronts. Urban Ecosystems, 18(1), 189 – 208.

View Publication

Abstract

Urban waterfronts are rarely designed to support biodiversity and other ecosystem services, yet have the potential to provide these services. New approaches that integrate ecological research into the design of docks and seawalls provide opportunities to mitigate the environmental impacts of urbanization and recover ecosystem function in urban waterfronts. A review of current examples of ecological design in temperate cities informs suggestions for future action. Conventional infrastructures have significant and diverse impacts on aquatic ecosystems. The impacts of conventional infrastructure are reduced where ecological designs have been implemented, particularly by projects adding microhabitat, creating more shallow water habitat, and reconstructing missing or altered rocky benthic habitats. Opportunities for future research include expanding current research into additional ecosystems, examining ecological processes and emergent properties to better address ecosystem function in ecological design, and addressing the impact of and best practices for continuing maintenance. Planned ecological infrastructure to replace aging and obsolete structures will benefit from design feedback derived from carefully executed in situ pilot studies.

Keywords

Coastal Defense Structures; Fixed Artificial Habitats; Marine Habitats; Intertidal Seawalls; Benthic Communities; Reconciliation Ecology; Subtidal Epibiota; Rocky Shores; Reef; Biodiversity; Ecological Design; Seawalls; Habitat; Waterfront; Urban Infrastructure; Aquatic Ecology