Skip to content

Innovative communication strategies for promoting urban wildlife habitat conservation

Waller, M., Cove, M. V., Daniels, J. C., & Yocom, K. P. (2025). Innovative communication strategies for promoting urban wildlife habitat conservation. Landscape and Urban Planning, 253, 105229-. https://doi.org/10.1016/j.landurbplan.2024.105229

View Publication

Abstract

The emerging recognition of the importance of urban habitat and wildlife for increasing biodiversity, driven partly by responses to climate change and urbanization, presents critical opportunities for urban biodiversity conservation and species recovery. However, effectively communicating these benefits to the public and policymakers remains a challenge for scientists and landscape architects with public perceptions, often shaped by diverse socio-cultural factors, serving as obstacles for garnering support. Our research explores innovative communication strategies through an intersectional analysis of planning and design communications and theory in museology and presents a structured approach in the use of charismatic species within interpretive studies to enhance public empathy and the potential for action. This research offers a valuable foundation for planning and design professionals, guiding their efforts to promote urban wildlife habitat and bridge the gaps between scientific knowledge and public advocacy.

Keywords

Urban wildlife habitat; Biodiversity conservation; Communication strategies

Products from 2023 Inspire Fund Cohort

A cohort of 4 projects were awarded Inspire Funds in April 2023. The report-outs from these projects are described below with a summary of project work and progress. The 2023 cohort of Inspire Fund awardees met with the 2024 cohort of awardees in May 2024 to share their accomplishments, successes, and challenges, and to foster a connection between these research teams as resources to one another. The 2024 cohort has begun their projects and will share their products in 2025….

Building equity into public park and recreation service investment: A review of public agency approaches

Beck, H., Berney, R., Kirk, B., & Yocom, K. P. (2024). Building equity into public park and recreation service investment: A review of public agency approaches. Landscape and Urban Planning. https://doi.org/10.1016/j.landurbplan.2024.105069

View Publication

Abstract

In recent decades, academic and professional research has increased understanding of the importance of city and landscape planners engaging with social and environmental justice issues, including contemporary inequities inherent in the planning, distribution, use, and access of public green and open spaces. However, there is a gap between this research centering equity and the planning, development, and implementation rate demonstrated by public agencies. In this article, we examine examples of emerging practice in the public park and recreation sector to understand the strategies and approaches public agencies are taking to provide equitable park and recreation systems. Our research identifies and analyzes 17 examples of North American public park and open space management agencies using equity-based planning frameworks to prioritize park investment and resource distribution. Equity-focused resource analysis is distinct because while it assesses budget and project-based funding distributions, it further incorporates assessments of historical allocations to understand better areas of under-investment and the evolving needs of different communities. As economic inequities become more pronounced, local governments, and other public institutions providing services to populations, are important in helping communities navigate changes. Our findings support the ongoing advancement of equity-driven planning and implementation for public park and recreation agencies by providing practical information on existing approaches to redress the impact of unfair patterns of under-investment.

CBE Research Restart Funding: Progress and Updates

The College of Built Environments awarded Research Restart funding to multiple project teams in 2022. Below are descriptions of their progress and project status to-date. July 2022 Cohort: Arthur Acolin received funding for their project entitled “Accessory Dwelling Units as Potential Source of Affordable Housing Across Generations.” A no-cost extension was approved in May 2023 due to delays in implementing the survey for the project. In July 2023, design of the survey instrument and postcards was completed, and next steps…

Utilizing Fractal Dimensions as Indicators to Detect Elements of Visual Attraction: A Case Study of the Greenway along Lake Taihu, China

Fan, R., Yocom, K. P., & Guo, Y. (2023). Utilizing Fractal Dimensions as Indicators to Detect Elements of Visual Attraction: A Case Study of the Greenway along Lake Taihu, China. Land (Basel), 12(4), 883–. https://doi.org/10.3390/land12040883

View Publication

Abstract

It is widely acknowledged that the quality of greenway landscape resources enhances the visual appeal of people. While most studies have evaluated visual perception and preference, few have considered the relationship between the distribution of greenways in relation to the proximity of water bodies such as lakes and rivers. Such an investigation requires an in-depth analysis of how to plan and design greenways in order to better enhance people's willingness to access and utilize them. In this research we propose specific color brightness and contour visual attraction elements to further discuss the quality of greenway landscape resources in the rapidly urbanizing Lake Taihu region of China. Specifically, we utilize a common method in fractal theory analysis called counting box dimension to calculate and analyze the sample images. The method generates data on fractal dimension (FD) values of two elements; the optimal fractal dimension threshold range; the characteristics exhibited by the maximum and minimum fractal dimension values in the greenway landscape; and the relationship between the two visual attraction elements allowing us to derive distribution of the greenway and water bodies. The results reveal that greenway segments with high values of the visual attraction element of color brightness fractal dimension (FD) are significantly closer to the lake than those subject to high values of the visual attraction element. Some segments are even close to the lake surface, which is because the glare from the direct sunlight and the reflection from the lake surface superimposed on each other, so that the greenway near the lake surface is also affected by the brightness and shows the result of high color brightness values. However, the greenway segments with high values of contour element FD are clearly more influenced by plants and other landscape elements. This is due to the rich self-similarity of the plants themselves. Most of the greenway segments dominated by contour elements are distant from the lake surface. Both color brightness and contour elements are important indicators of the quality of the visual resources of the Lake Taihu Greenway landscape. This reveals that the determination of the sub-dimensional values of color brightness (1.7608, 1.9337) and contour (1.7230, 1.9006) visual attraction elements and the optimal threshold range (1.7608, 1.9006) can provide theoretical implications for the landscape planning and design of lake-ring type greenways and practical implications for assessing the quality of visual resources in greenway landscapes.

Keywords

color brightness; contour; visual attraction; fractal dimension (FD); boxplot; Lake Taihu

College of Built Environments Announces 2023 Inspire Fund Awards

In 2021, the College of Built Environments launched the CBE Inspire Fund to “inspire” CBE research activities that are often underfunded, but for which a relatively small amount of support can be transformative. The Inspire Fund aims to support research where arts and humanities disciplines are centered, and community partners are engaged in substantive ways. Inspire Fund is also meant to support ‘seed’ projects, where a small investment in early research efforts may serve as a powerful lever for future…

Evaluation Strategies on the Thermal Environmental Effectiveness of Street Canyon Clusters: A Case Study of Harbin, China

Li, Guanghao; Cheng, Qingqing; Zhan, Changhong; Yocom, Ken P. (2022). Evaluation Strategies on the Thermal Environmental Effectiveness of Street Canyon Clusters: A Case Study of Harbin, China. Sustainability, 14(20).

View Publication

Abstract

Urban overheating significantly affects people's physical and mental health. The addition of street trees is an essential, economical, and effective means by which to mitigate urban heat and optimize the overall thermal environment. Focusing on typical street canyon clusters in Harbin, China, landscape morphology was quantified by streetscape interface measurements (sky view factor, tree view factor, and building view factor). Through ENVI-met simulations, the correlation mechanism between streetscape interface measurements and thermal environment was evaluated, and optimization methods for assessing the thermal environment of urban streets were proposed. The results revealed: (1) The thermal environment optimization efficiency of general street canyon types was greatest when street tree spacing was 12 m. At present, the smaller spacing has not been simulated and may yield better thermal environment results. The average decrease in temperature (Ta), relative humidity (RH) and mean radiant temperature (MRT) was 0.78%, 2.23%, and 30.20%, respectively. (2) Specific street canyon types should adopt precise control strategies of streetscape interface according to their types to achieve the optimal balance between thermal environment optimization and cost. (3) Streetscape interface measurements and thermal environment indexes show quadratic correlation characteristics, and are critical points for further investigation. The conclusions are more specific than previous research findings, which are of great significance for decreasing the urban heat island effect at the block scale, improving residents' physical and mental health, and improving the urban environment quality.

Keywords

Heat Mitigation Strategies; Urban Green Areas; Sky View Factor; Cold Region; Comfort; Tree; Landscape; Park; Simulation; Density; Street Canyon Clusters; Streetscape Interface Measurement; Envi-met Simulation; Thermal Optimization

College of Built Environments’ Research Restart Fund Awards Four Grants in First of Two Cycles

The College of Built Environments launched a funding opportunity for those whose research has been affected by the ongoing pandemic. The Research Restart Fund, with awards up to $5,000, has awarded 4 grants in its first of two cycles. A grant was awarded to Real Estate faculty member Arthur Acolin, who is partnering with the City of Seattle’s Office of Planning and Community Development to understand barriers that homeowners, particularly those with lower incomes, face to building Accessory Dwelling Units…

Ecological Design For Urban Waterfronts

Dyson, Karen; Yocom, Ken. (2015). Ecological Design For Urban Waterfronts. Urban Ecosystems, 18(1), 189 – 208.

View Publication

Abstract

Urban waterfronts are rarely designed to support biodiversity and other ecosystem services, yet have the potential to provide these services. New approaches that integrate ecological research into the design of docks and seawalls provide opportunities to mitigate the environmental impacts of urbanization and recover ecosystem function in urban waterfronts. A review of current examples of ecological design in temperate cities informs suggestions for future action. Conventional infrastructures have significant and diverse impacts on aquatic ecosystems. The impacts of conventional infrastructure are reduced where ecological designs have been implemented, particularly by projects adding microhabitat, creating more shallow water habitat, and reconstructing missing or altered rocky benthic habitats. Opportunities for future research include expanding current research into additional ecosystems, examining ecological processes and emergent properties to better address ecosystem function in ecological design, and addressing the impact of and best practices for continuing maintenance. Planned ecological infrastructure to replace aging and obsolete structures will benefit from design feedback derived from carefully executed in situ pilot studies.

Keywords

Coastal Defense Structures; Fixed Artificial Habitats; Marine Habitats; Intertidal Seawalls; Benthic Communities; Reconciliation Ecology; Subtidal Epibiota; Rocky Shores; Reef; Biodiversity; Ecological Design; Seawalls; Habitat; Waterfront; Urban Infrastructure; Aquatic Ecology

Revitalizing Urban Waterfronts: Identifying Indicators For Human Well-being

Yocom, Ken P.; Andrews, Leann; Faghin, Nicole; Dyson, Karen; Leschine, Thomas; Nam, Jungho. (2016). Revitalizing Urban Waterfronts: Identifying Indicators For Human Well-being. Aims Environmental Science, 3(3), 456 – 473.

View Publication

Abstract

Waterfront cities worldwide have begun the process of regenerating and developing their formerly industrial waterfronts into land uses that reflect a post-industrial economic vision of mixed urban uses supporting a diverse economy and wide range of infrastructure. These revitalization projects require distinct planning and management tactics to determine project-defined successes inclusive of economic, ecological, and human well-being perspectives. While empirically developed templates for economic and ecological measures exist, the multi-dimensionality and subjective nature of human well-being is more difficult to assess. Through an extensive review of indicator frameworks and expert interviews, our research proposes an organizational, yet adaptable, human well-being indicators framework for the management and development of urban waterfront revitalization projects. We analyze the framework through the lens of two waterfront projects in the Puget Sound region of the United States and identify several key factors necessary to developing project-specific human well-being indicator frameworks for urban waterfront revitalization projects. These factors include: initially specify goals and objectives of a given project, acknowledge contextual conditions including prospective land uses and projected users, identify the stage of development or management to use appropriate indicators for that stage, and develop and utilize data sources that are at a similar scale to the size of the project.

Keywords

Quality-of-life; City Waterfront; Dimensions; Framework; Science; Policy; Urban Waterfront Revitalization; Human Well-being; Indicators; Design And Management