Liang, Huakang; Lin, Ken-yu; Zhang, Shoujian. (2018). Understanding The Social Contagion Effect Of Safety Violations Within A Construction Crew: A Hybrid Approach Using System Dynamics And Agent-based Modeling. International Journal Of Environmental Research And Public Health, 15(12).
View Publication
Abstract
Previous research has recognized the importance of eliminating safety violations in the context of a social group. However, the social contagion effect of safety violations within a construction crew has not been sufficiently understood. To address this deficiency, this research aims to develop a hybrid simulation approach to look into the cognitive, social, and organizational aspects that can determine the social contagion effect of safety violations within a construction crew. The hybrid approach integrates System Dynamics (SD) and Agent-based Modeling (ABM) to better represent the real world. Our findings show that different interventions should be employed for different work environments. Specifically, social interactions play a critical role at the modest hazard levels because workers in this situation may encounter more ambiguity or uncertainty. Interventions related to decreasing the contagion probability and the safety-productivity tradeoff should be given priority. For the low hazard situation, highly intensive management strategies are required before the occurrence of injuries or accidents. In contrast, for the high hazard situation, highly intensive proactive safety strategies should be supplemented by other interventions (e.g., a high safety goal) to further control safety violations. Therefore, this research provides a practical framework to examine how specific accident prevention measures, which interact with workers or environmental characteristics (i.e., the hazard level), can influence the social contagion effect of safety violations.
Keywords
Risk-taking; Coworker Support; Employee Safety; Job Demands; Work Groups; Behavior; Climate; Impact; Performance; Simulation; Social Contagion Effect; Routine Safety Violations; Situational Safety Violations; System Dynamics; Agent-based Simulation; Research; Violations; Modelling; Accident Prevention; Social Factors; Safety; Organizational Aspects; Occupational Safety; Construction; Influence; Construction Accidents & Safety; Workers; Safety Management; Information Processing; Construction Industry; Hybrid Systems; Social Interactions; Cognitive Ability; Human Error; Accident Investigations
Liang, Huakang; Lin, Ken-yu; Zhang, Shoujian; Su, Yikun. (2018). The Impact Of Coworkers’ Safety Violations On An Individual Worker: A Social Contagion Effect Within The Construction Crew. International Journal Of Environmental Research And Public Health, 15(4).
View Publication
Abstract
This research developed and tested a model of the social contagion effect of coworkers' safety violations on individual workers within construction crews. Both situational and routine safety violations were considered in this model. Empirical data were collected from 345 construction workers in China using a detailed questionnaire. The results showed that both types of safety violations made by coworkers were significantly related to individuals' perceived social support and production pressure. Individuals' attitudinal ambivalence toward safety compliance mediated the relationships between perceived social support and production pressure and both types of individuals' safety violations. However, safety motivation only mediated the effects of perceived social support and production pressure on individuals' situational safety violations. Further, this research supported the differences between situational and routine safety violations. Specifically, we found that individuals were more likely to imitate coworkers' routine safety violations than their situational safety violations. Coworkers' situational safety violations had an indirect effect on individuals' situational safety violations mainly through perceived social support and safety motivation. By contrast, coworkers' routine safety violations had an indirect effect on individuals' routine safety violations mainly through perceived production pressure and attitudinal ambivalence. Finally, the theoretical and practical implications, research limitations, and future directions were discussed.
Keywords
Health-care Settings; Job Demands; Attitudinal Ambivalence; Industry Development; Workplace Safety; Behavior; Climate; Model; Risk; Employee; Social Contagion; Situational Safety Violations; Routine Safety Violations; Social Learning; Social Information Processing
Lin, Ken-yu; Lee, Wonil; Azari, Rahman; Migliaccio, Giovanni C. (2018). Training Of Low-literacy And Low-english-proficiency Hispanic Workers On Construction Fall Fatality. Journal Of Management In Engineering, 34(2).
View Publication
Abstract
The construction industry has made extensive efforts to improve the safety of its labor force through various approaches, including training. However, many construction workers in the United States are recent immigrants who lack English proficiency and do not possess sufficient literacy levels in their own language for training comprehension. This reduces the effectiveness of traditional text-dominated translated training materials, which depend on both literacy and proficiency in a language. Thus, in this study, the authors used three-dimensional (3D) visualization to overcome the communication barriers that hinder effective safety training for low-literacy (LL) and low-English-proficiency (LEP) construction workers. This article summarizes the contributions of a study sponsored by the Occupational Safety and Health Administration (OSHA) Susan Harwood Training Grant Program; it describes the methodology to develop scenario-based 3D training materials on fall safety for LL and LEP workers and to validate the effectiveness of the materials. The results show that 3D training materials improve interaction between trainer and trainee during safety training, facilitate learning processes, and can overcome some of the communication barriers that hinder effective safety training. (c) 2017 American Society of Civil Engineers.
Keywords
Chemical Hazards; Computer Based Training; Construction Industry; Hazardous Materials; Industrial Training; Occupational Health; Occupational Safety; Personnel; Safety; Low-literacy; Low-english-proficiency Hispanic Workers; Construction Fall Fatality; Extensive Efforts; Labor Force; Construction Workers; English Proficiency; Sufficient Literacy Levels; Training Comprehension; Training Materials; Three-dimensional Visualization; Communication Barriers; Effective Safety Training; Health Administration Susan Harwood Training Grant Program; Fall Safety; Occupational Injuries; United-states; Industry; Health; Education; Issues; Occupational Health And Safety; Training; Visualization; Fall Protection; Case Study
Lee, Wonil; Migliaccio, Giovanni C.; Lin, Ken-Yu; Seto, Edmund Y. W. (2020). Workforce Development: Understanding Task-Level Job Demands-Resources, Burnout, and Performance in Unskilled Construction Workers. Safety Science, 123.
View Publication
Abstract
This study examines how task demands and personal resources affect unskilled construction worker productivity and safety performance. It extends the job demands-resources (JD-R) burnout model to show how job characteristics interact with burnout to influence performance. A modified model was designed to measure burnout, with exhaustion and disengagement among unskilled construction workers taken into consideration. An observational study was conducted in a laboratory environment to test the research hypotheses and assess the prediction accuracies of outcome constructs. Twenty-two subjects participated in multiple experiments designed to expose them to varying levels of task-demands and to record their personal resources as they performed common construction material-handling tasks. Specifically, both surveys and physiological measurements using wearable sensors were used to operationalize the model constructs. Moreover, partial least squares structural equation modeling was applied to analyze data collected at the task and individual levels. Exhaustion and disengagement exhibited different relationships with productivity and safety performance outcomes as measured by unit rate productivity and ergonomic behavior, respectively. Subjects with high burnout and high engagement showed high productivity but low safety performance. Thus, exhausted workers stand a greater chance of failing to comply with safety. As the sample and the task performed in the experiment do not cover the experience and trade of all construction workers, our findings are limited in their application to entry-level and unskilled workers, whose work is mainly manual material-handling tasks.
Keywords
Construction Workers; Structural Equation Modeling; Job Descriptions; Labor Productivity; Labor Supply; Burnout; Job Demand-resources Model; Partial Least Squares Structural Equation Modeling; Productivity; Safety; Wearable Sensors; Biomechanics; Construction Industry; Ergonomics; Occupational Health; Occupational Safety; Occupational Stress; Personnel; Statistical Analysis; Workforce Development; Understanding Task-level Job Demands-resources; Unskilled Construction Workers; Task Demands; Personal Resources; Unskilled Construction Worker Productivity; Job Demands-resources Burnout Model; Job Characteristics Interact; Exhaustion; Disengagement; Outcome Constructs; Varying Levels; Task-demands; Common Construction Material-handling Tasks; Physiological Measurements; Model Constructs; Individual Levels; Unit Rate Productivity; High Burnout; Low Safety Performance; Exhausted Workers; Entry-level; Unskilled Workers; Manual Material-handling Tasks; Heart-rate-variability; Labor Productivity Trends; Physiological Demands; Emotional Exhaustion; Safety Climate; Role Stress; Engagement; Fatigue; Workload; Task Analysis; Workforce; Level (quantity); Construction Materials; Personnel Management; Materials Handling; Multivariate Statistical Analysis
Zhang, Zhenyu; Lin, Ken-yu; Lin, Jia-hua. (2021). Factors Affecting Material-Cart Handling in the Roofing Industry: Evidence for Administrative Controls. International Journal Of Environmental Research And Public Health, 18(4).
View Publication
Abstract
Material-cart handling can be strenuous and lead to overexertion injuries. The aim of this study is to produce a thorough understanding of how the cart condition, tire type, physical environment-related factors, and load interact to influence the ergonomics and productivity of cart handling. Eighteen roofing carts with different conditions, tires, and loads were tested by one subject on three laboratory tracks: one L-shaped, one with ramps within constrained spaces, and one with obstacles within constrained spaces. A multiple linear regression analysis was performed to quantify the main and interaction effects of the factors of interest on the cart operations. The research findings confirm that using aged carts increases the injury risk by as much as 30.5% and decreases productivity by 35.4%. Our study also highlights the necessity of keeping an open space for cart operation; the travel distance from a cart to a ramp/obstacle should be greater than 61 cm. Finally, the results suggest the at-risk thresholds for different ramp slopes and obstacle heights, and the safe load capacities for the various working circumstances that are common on construction sites. The evidence created in this study can be translated into administrative controls for cart handling to reduce overexertion injuries and enhance performance.
Keywords
Overexertion In Pulling And Pushing; Material Cart Handling; Roof Construction; Ergonomic Risk Factors; Administrative Control
Zhang, Zhenyu; Lin, Ken-yu; Lin, Jia-hua. (2022). 2safe: A Health Belief Model-integrated Framework For Participatory Ergonomics. Theoretical Issues In Ergonomics Science, 1 – 18.
View Publication
Abstract
Abstract Initiating ergonomics interventions in a business environment requires changes in the behaviour of relevant actors. When participating in an intervention, researchers need to collect and share information with practitioners to help them make better behaviour-related decisions. This paper describes the five-step 2SAFE (Surveillance, Screening, Assessment, Framing, and Evaluation) planning framework, which can be used to guide research-practice collaboration in participatory ergonomics programmes. This framework combines the understanding of work-related musculoskeletal disorders with the principles of the health belief model. This theoretical synthesis empowers the framework to address the following critical challenges: (1) how to make data collection processes attuned to the nature of ergonomic injuries; and (2) how to transform the data collected into immediately usable information for practitioners to change their behaviours. The framework is interdisciplinary and can facilitate transfer of knowledge between ergonomics and health behaviour science. The framework can enhance the ability of researchers to collaborate with practitioners and bring participatory ergonomics programmes closer to success. In the long term, we hope that this framework can lead to more high-quality interventions that are able to prevent work-related musculoskeletal disorders in various industrial settings. [ABSTRACT FROM AUTHOR]; Copyright of Theoretical Issues in Ergonomics Science is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Keywords
Health Belief Model; Intervention Programme; Participatory Ergonomics; Planning Framework; Work-related Musculoskeletal Disorders
Hsieh, Shang-hsien; Lin, Hsien-tang; Chi, Nai-wen; Chou, Kuang-wu; Lin, Ken-yu. (2011). Enabling The Development Of Base Domain Ontology Through Extraction Of Knowledge From Engineering Domain Handbooks. Advanced Engineering Informatics, 25(2), 288 – 296.
View Publication
Abstract
Domain ontology, encompassing both concepts and instances, along with their relations and properties, is a new medium for the storage and propagation of domain specific knowledge. A significant problem remains the effort which must be expended during ontology construction. This involves collecting the domain-related vocabularies, developing the domain concept hierarchy, and defining the properties of each concept and the relationships between concepts. Recently several engineering handbooks have described detailed domain knowledge by organizing the knowledge into categories, sections, and chapters with indices in the appendix. This paper proposes the extraction of concepts, instances, and relationships from a handbook of a specific domain to quickly construct base domain ontology as a good starting point for expediting the development process of more comprehensive domain ontology. The extracted information can also be reorganized and converted into web ontology language format to represent the base domain ontology. The generation of a base domain ontology from an Earthquake Engineering Handbook is used to illustrate the proposed approach. In addition, quality evaluation of the extracted base ontology is performed and discussed. (C) 2010 Elsevier Ltd. All rights reserved.
Keywords
Ontology; Earthquake Engineering; World Wide Web; Theory Of Knowledge; Vocabulary; Programming Languages; Domain Handbook; Domain Ontology; Owl; Web Ontology Language; Knowledge Representation Languages; Ontologies (artificial Intelligence); Base Domain Ontology; Knowledge Extraction; Engineering Domain Handbooks; Domain Specific Knowledge Storage; Domain Specific Knowledge Propagation; Domain-related Vocabularies; Domain Concept Hierarchy; Development Process; Web Ontology Language Format; Earthquake Engineering Handbook; Semantic Web; Management; Design
Zuidema, Christopher; Austin, Elena; Cohen, Martin A.; Kasner, Edward; Liu, Lilian; Isaksen, Tania Busch; Lin, Ken-Yu; Spector, June; Seto, Edmund. (2022). Potential Impacts Of Washington State’s Wildfire Worker Protection Rule On Construction Workers. Annals Of Work Exposures & Health, 66(4), 419 – 432.
View Publication
Abstract
Driven by climate change, wildfires are increasing in frequency, duration, and intensity across the Western United States. Outdoor workers are being exposed to increasing wildfire-related particulate matter and smoke. Recognizing this emerging risk, Washington adopted an emergency rule and is presently engaged in creating a permanent rule to protect outdoor workers from wildfire smoke exposure. While there are growing bodies of literature on the exposure to and health effects of wildfire smoke in the general public and wildland firefighters, there is a gap in knowledge about wildfire smoke exposure among outdoor workers generally and construction workers specifically-a large category of outdoor workers in Washington totaling 200,000 people. Several data sources were linked in this study-including state-collected employment data and national ambient air quality data-to gain insight into the risk of PM2.5 exposure among construction workers and evaluate the impacts of different air quality thresholds that would have triggered a new Washington emergency wildfire smoke rule aimed at protecting workers from high PM2.5 exposure. Results indicate the number of poor air quality days has increased in August and September in recent years. Over the last decade, these months with the greatest potential for particulate matter exposure coincided with an annual peak in construction employment that was typically 9.4-42.7% larger across Washington counties (one county was 75.8%). Lastly, the 'encouraged' threshold of the Washington emergency rule (20.5 mu g m(-3)) would have resulted in 5.5 times more days subject to the wildfire rule on average across all Washington counties compared to its 'required' threshold (55.5 mu g m(-3)), and in 2020, the rule could have created demand for 1.35 million N-95 filtering facepiece respirators among construction workers. These results have important implications for both employers and policy makers as rules are developed. The potential policy implications of wildfire smoke exposure, exposure control strategies, and data gaps that would improve understanding of construction worker exposure to wildfire smoke are also discussed.
Keywords
Particulate Matter; Industrial Safety; Occupational Exposure; Rules; Smoke; Construction Industry; Employment; Occupational Hazards; Descriptive Statistics; Industrial Hygiene; Wildfires; N95 Respirators; Washington (state); Forest Fires; Pm 2.5; Respirator; Wildfire Smoke Protection Rule; Wildland Fire; Pm2 5; Health Impacts; Climate-change; Forest-fire; Exposure; Firefighters; Infiltration
Lin, K. Y.; Levan, A.; Dossick, C. S. (2012). Teaching Life-Cycle Thinking in Construction Materials and Methods: Evaluation of and Deployment Strategies for Life-Cycle Assessment in Construction Engineering and Management Education. Journal Of Professional Issues In Engineering Education And Practice, 138(3), 163 – 170.
View Publication
Keywords
Sustainability; Design
Chi, Nai-wen; Lin, Ken-yu; Hsieh, Shang-hsien. (2014). Using Ontology-based Text Classification To Assist Job Hazard Analysis. Advanced Engineering Informatics, 28(4), 381 – 394.
View Publication
Abstract
The dangers of the construction industry due to the risk of fatal hazards, such as falling from extreme heights, being struck by heavy equipment or materials, and the possibility of electrocution, are well known. The concept of Job Hazard Analysis is commonly used to mitigate and control these occupational hazards. This technique analyzes the major tasks in a construction activity, identifies all potential task-related hazards, and suggests safe approaches to reduce or avoid each of these hazards. In this paper, the authors explore the possibility of leveraging existing construction safety resources to assist JHA, aiming to reduce the level of human effort required. Specifically, the authors apply ontology-based text classification (TC) to match safe approaches identified in existing resources with unsafe scenarios. These safe approaches can serve as initial references and enrich the solution space when performing JHA. Various document modification strategies are applied to existing resources in order to achieve superior TC effectiveness. The end result of this research is a construction safety domain ontology and its underlying knowledge base. A user scenario is also discussed to demonstrate how the ontology supports JHA in practice. (C) 2014 Elsevier Ltd. All rights reserved.
Keywords
Construction Industry; Health Hazards; Human Factors; Occupational Safety; Ontologies (artificial Intelligence); Pattern Classification; Text Analysis; Ontology-based Text Classification; Job Hazard Analysis; Fatal Hazards; Task-related Hazard; Construction Safety Resource; Jha; Construction Safety Domain Ontology; Construction; Information; Construction Safety; Information Retrieval; Knowledge Management; Ontology; Text Classification