Skip to content

Urban landscape affects scaling of transportation carbon emissions across geographic scales

Jung, M. C., Wang, T., Kang, M., Dyson, K., Dawwas, E. B., & Alberti, M. (2024). Urban landscape affects scaling of transportation carbon emissions across geographic scales. Sustainable Cities and Society, 113, 105656-. https://doi.org/10.1016/j.scs.2024.105656

View Publication

Abstract

Understanding the carbon dynamics of the transportation sector is necessary to mitigate global climate change. While urban scaling laws have been used to understand the impact of urban population size on carbon efficiency, the instability of these scaling relationships raises additional questions. Here, we examined the scaling of on-road transportation carbon emissions across 378 US metropolitan statistical areas (MSAs) using diverse urban landscape patterns and spatial units, from the MSA level down to 1 km grid cells. Beginning with a baseline scaling model that uses only population size, we expanded the model to include landscape metrics at each spatial scale based on correlation results. We found that: (1) urban landscape characteristics provide insights into carbon mechanisms not fully captured by population size alone, (2) the impact of population size on on-road carbon emissions transitions from linear to sub-linear scaling relationships as the geographic scale of analysis decreases, and (3) clustered urban developments can form carbon-efficient landscapes, while fragmented urban areas tend to be carbon-inefficient. Based on empirical evidence, this research advocates for hierarchical spatial planning and supports the implementation of policy measures aligned with smart growth principles to mitigate carbon pollution.

Online toolkits for collaborative and inclusive global research in urban evolutionary ecology

Savage, A. M., Willmott, M. J., Moreno‐García, P., Jagiello, Z., Li, D., Malesis, A., Miles, L. S., Román‐Palacios, C., Salazar‐Valenzuela, D., Verrelli, B. C., Winchell, K. M., Alberti, M., Bonilla‐Bedoya, S., Carlen, E., Falvey, C., Johnson, L., Martin, E., Kuzyo, H., Marzluff, J., … Gotanda, K. M. (2024). Online toolkits for collaborative and inclusive global research in urban evolutionary ecology. Ecology and Evolution, 14(6), e11633-n/a. https://doi.org/10.1002/ece3.11633

View Publication

Abstract

Urban evolutionary ecology is inherently interdisciplinary. Moreover, it is a field with global significance. However, bringing researchers and resources together across fields and countries is challenging. Therefore, an online collaborative research hub, where common methods and best practices are shared among scientists from diverse geographic, ethnic, and career backgrounds would make research focused on urban evolutionary ecology more inclusive. Here, we describe a freely available online research hub for toolkits that facilitate global research in urban evolutionary ecology. We provide rationales and descriptions of toolkits for: (1) decolonizing urban evolutionary ecology; (2) identifying and fostering international collaborative partnerships; (3) common methods and freely-available datasets for trait mapping across cities; (4) common methods and freely-available datasets for cross-city evolutionary ecology experiments; and (5) best practices and freely available resources for public outreach and communication of research findings in urban evolutionary ecology. We outline how the toolkits can be accessed, archived, and modified over time in order to sustain long-term global research that will advance our understanding of urban evolutionary ecology.

Interactions between climate change and urbanization will shape the future of biodiversity

Urban, M.C., Alberti, M., De Meester, L. et al. Interactions between climate change and urbanization will shape the future of biodiversity. Nat. Clim. Chang. (2024). https://doi.org/10.1038/s41558-024-01996-2

View Publication

Abstract

Climate change and urbanization are two of the most prominent global drivers of biodiversity and ecosystem change. Fully understanding, predicting and mitigating the biological impacts of climate change and urbanization are not possible in isolation, especially given their growing importance in shaping human society. Here we develop an integrated framework for understanding and predicting the joint effects of climate change and urbanization on ecology, evolution and their eco-evolutionary interactions. We review five examples of interactions and then present five hypotheses that offer opportunities for predicting biodiversity and its interaction with human social and cultural systems under future scenarios. We also discuss research opportunities and ways to design resilient landscapes that address both biological and societal concerns.

Legacies of redlining lead to unequal cooling effects of urban tree canopy

Jung, M. C., Yost, M. G., Dannenberg, A. L., Dyson, K., & Alberti, M. (2024). Legacies of redlining lead to unequal cooling effects of urban tree canopy. Landscape and Urban Planning, 246. https://doi.org/10.1016/j.landurbplan.2024.105028
View Publication

Abstract

Redlining—a racially discriminatory policy of systematic disinvestment established by the Home Owners’ Loan Corporation (HOLC) in the 1930s and continued until the late 1960s—still influences the contemporary landscape of cities in the US. While the heterogeneous distribution of land surface temperature and tree canopy cover between neighborhoods with different HOLC grades have been recently examined, the development of long-term and city-specific heat management strategies is still limited. Here, we explored the effect of redlining in Portland, Oregon, and Philadelphia, Pennsylvania, to assess its contemporary impact on climate equity. We performed a change analysis of land surface temperature and tree canopy area over the past and introduced mixed-effects models to test the intra- and inter-city differences in canopy cooling effects between the different HOLC grades. We found that (1) persistent temporal patterns of lower land surface temperatures and larger tree canopy areas are observed in higher HOLC grades, (2) greater green equity was achieved through contrasting temporal changes in tree canopy areas across HOLC grades in Portland and Philadelphia, and (3) opposite patterns exist between these cities, with stronger canopy cooling effects in neighborhoods with a Low HOLC grade in Portland and those with a High HOLC grade in Philadelphia. Differences in tree canopy change between the two cities over the past decade highlight potential influences of city-specific tree planting practices. Local planners should back tree planting initiatives to equitably mitigate urban heat exposure, considering historical redlining contexts and contemporary landscape features.

Keywords

Redlining; HOLC grade; Tree canopy; Land surface temperature; Tree equity

Cities of the Anthropocene: urban sustainability in an eco-evolutionary perspective

Alberti, Marina. (2023). Cities of the Anthropocene: urban sustainability in an eco-evolutionary perspective. Philosophical Transactions of the Royal Society B, 379:20220264. 20220264.

View Publication

Abstract

Cities across the globe are driving systemic change in social and ecological systems by accelerating the rates of interactions and intensifying the links between human activities and Earth's ecosystems, thereby expanding the scale and influence of human activities on fundamental processes that sustain life. Increasing evidence shows that cities not only alter biodiversity, they change the genetic makeup of many populations, including animals, plants, fungi and microorganisms. Urban-driven rapid evolution in species traits might have significant effects on socially relevant ecosystem functions such as nutrient cycling, pollination, water and air purification and food production. Despite increasing evidence that cities are causing rapid evolutionary change, current urban sustainability strategies often overlook these dynamics. The dominant perspectives that guide these strategies are essentially static, focusing on preserving biodiversity in its present state or restoring it to pre-urban conditions. This paper provides a systemic overview of the socio-eco-evolutionary transition associated with global urbanization. Using examples of observed changes in species traits that play a significant role in maintaining ecosystem function and resilience, I propose that these evolutionary changes significantly impact urban sustainability. Incorporating an eco-evolutionary perspective into urban sustainability science and planning is crucial for effectively reimagining the cities of the Anthropocene.

This article is part of the theme issue ‘Evolution and sustainability: gathering the strands for an Anthropocene synthesis’.

Integration of Urban Science and Urban Climate Adaptation Research: Opportunities to Advance Climate Action

Lobo, J., Aggarwal, R. M., Alberti, M., Allen-Dumas, M., Bettencourt, L. M. A., Boone, C., Brelsford, C., Broto, V. C., Eakin, H., Bagchi-Sen, S., Meerow, S., D’Cruz, C., Revi, A., Roberts, D. C., Smith, M. E., York, A., Lin, T., Bai, X., Solecki, W., … Gauthier, N. (2023). Integration of urban science and urban climate adaptation research: opportunities to advance climate action. Npj Urban Sustainability, 3(1), 32–39. https://doi.org/10.1038/s42949-023-00113-0

View Publication

Abstract

There is a growing recognition that responding to climate change necessitates urban adaptation. We sketch a transdisciplinary research effort, arguing that actionable research on urban adaptation needs to recognize the nature of cities as social networks embedded in physical space. Given the pace, scale and socioeconomic outcomes of urbanization in the Global South, the specificities and history of its cities must be central to the study of how well-known agglomeration effects can facilitate adaptation. The proposed effort calls for the co-creation of knowledge involving scientists and stakeholders, especially those historically excluded from the design and implementation of urban development policies.

Say Where You Sample: Increasing Site Selection Transparency in Urban Ecology

Dyson, Karen; Dawwas, Emad; Poulton Kamakura, Renata; Alberti, Marina; Fuentes, Tracy L. (2023). Say Where You Sample: Increasing Site Selection Transparency in Urban Ecology. Ecosphere, 14(3).

View Publication

Abstract

Urban ecological studies have the potential to expand our understanding of socioecological systems beyond that of an individual city or region. Cross-comparative empirical work and synthesis are imperative to develop a general urban ecological theory. This can be achieved only if studies are replicable and generalizable. Transparency in methods reporting facilitates generalizability and replicability by documenting the decisions scientists make during the various steps of research design; this is particularly true for sampling design and selection because of their impact on both internal and external validity and the potential to unintentionally introduce bias. Three interdependent aspects of sample design are study sample selection (e.g., specific organisms, soils, or water), sample specification (measurement of specific variable of interest), and site selection (locations sampled). Of these, documentation of site selection—the where component of sample design—is underrepresented in the urban ecology literature. Using a stratified random sample of 158 papers from 12 major urban ecology journals, we investigated how researchers selected study sites in urban ecosystems and evaluated whether their site selection methods were transparent. We extracted data from these papers using a 50-question, theory-based questionnaire and a multiple-reviewer approach. Our sample represented almost 45 years of urban ecology research across 40 different countries. We found that more than 80% of the papers we read were not transparent in their site selection methodology. We do not believe site selection methods are replicable for 70% of the papers read. Key weaknesses include incomplete descriptions of populations and sampling frames, urban gradients, sample selection methods, and property access. Low transparency in reporting the where methodology limits urban ecologists' ability to assess the internal and external validity of studies' findings and to replicate published studies; it also limits the generalizability of existing studies. The challenges of low transparency are particularly relevant in urban ecology, a field where standard protocols for site selection and delineation are still being developed. These limitations interfere with the fields' ability to build theory and inform policy. We conclude by offering a set of recommendations to increase transparency, replicability, and generalizability.

Keywords

external validity, field ecology, generalizability, internal validity, replication, reproducibility, sampling design, site selection, theory building, transparency

A Global Horizon Scan for Urban Evolutionary Ecology

Verrelli, Brian C.; Alberti, Marina; Des Roches, Simone; Harris, Nyeema C.; Hendry, Andrew P.; Johnson, Marc T. J.; Savage, Amy M.; Charmantier, Anne; Gotanda, Kiyoko M.; Govaert, Lynn; Miles, Lindsay S.; Rivkin, L. Ruth; Winchell, Kristin M.; Brans, Kristien I.; Correa, Cristian; Diamond, Sarah E.; Fitzhugh, Ben; Grimm, Nancy B.; Hughes, Sara; Marzluff, John M.; Munshi-south, Jason; Rojas, Carolina; Santangelo, James S.; Schell, Christopher J.; Schweitzer, Jennifer A.; Szulkin, Marta; Urban, Mark C.; Zhou, Yuyu; Ziter, Carly. (2022). A Global Horizon Scan for Urban Evolutionary Ecology. Trends In Ecology & Evolution, 37(11), 1006-1019.

View Publication

Abstract

Research on the evolutionary ecology of urban areas reveals how human-induced evolutionary changes affect biodiversity and essential ecosystem services. In a rapidly urbanizing world imposing many selective pressures, a time-sensitive goal is to identify the emergent issues and research priorities that affect the ecology and evolution of species within cities. Here, we report the results of a horizon scan of research questions in urban evolutionary ecology submitted by 100 interdisciplinary scholars. We identified 30 top questions organized into six themes that highlight priorities for future research. These research questions will require methodological advances and interdisciplinary collaborations, with continued revision as the field of urban evolutionary ecology expands with the rapid growth of cities.

Keywords

Urban Ecology; Sustainability; Cities & Towns; Ecosystem Dynamics; Urban Growth; Ecosystem Services; Urban Research; Climate Change; Sociopolitical; Urban Evolution; Urbanization; Human Health; Biodiversity; Adaptation; Challenges; Dynamics; Management; Invasion; Science

Back to the Future: Reintegrating Biology to Understand How Past Eco-evolutionary Change Can Predict Future Outcomes

Thompson, Cynthia L.; Alberti, Marina; Barve, Sahas; Battistuzzi, Fabia U.; Drake, Jeana L.; Goncalves, Guilherme Casas; Govaert, Lynn; Partridge, Charlyn; Yang, Ya. (2022). Back to the Future: Reintegrating Biology to Understand How Past Eco-evolutionary Change Can Predict Future Outcomes. Integrative And Comparative Biology, 61(6), 2218-2232.

View Publication

Abstract

During the last few decades, biologists have made remarkable progress in understanding the fundamental processes that shape life. But despite the unprecedented level of knowledge now available, large gaps still remain in our understanding of the complex interplay of eco-evolutionary mechanisms across scales of life. Rapidly changing environments on Earth provide a pressing need to understand the potential implications of eco-evolutionary dynamics, which can be achieved by improving existing eco-evolutionary models and fostering convergence among the sub-fields of biology. We propose a new, data-driven approach that harnesses our knowledge of the functioning of biological systems to expand current conceptual frameworks and develop corresponding models that can more accurately represent and predict future eco-evolutionary outcomes. We suggest a roadmap toward achieving this goal. This long-term vision will move biology in a direction that can wield these predictive models for scientific applications that benefit humanity and increase the resilience of natural biological systems. We identify short, medium, and long-term key objectives to connect our current state of knowledge to this long-term vision, iteratively progressing across three stages: (1) utilizing knowledge of biological systems to better inform eco-evolutionary models, (2) generating models with more accurate predictions, and (3) applying predictive models to benefit the biosphere. Within each stage, we outline avenues of investigation and scientific applications related to the timescales over which evolution occurs, the parameter space of eco-evolutionary processes, and the dynamic interactions between these mechanisms. The ability to accurately model, monitor, and anticipate eco-evolutionary changes would be transformational to humanity's interaction with the global environment, providing novel tools to benefit human health, protect the natural world, and manage our planet's biosphere.

Keywords

Rapid Evolution; Ecological Interactions; Niche Construction; Climate-change; Phenotype; Community; Selection; Fitness; Consequences; Variability