Skip to content

Embodied Carbon Toolkit for Building Owners

Lewis, M., Huang, M., Simonen, K. (2021), “Embodied Carbon Toolkit for Building Owners”. Carbon Leadership Forum. 

View Publication

Abstract

Investors, developers, and public or private building owners and tenants are essential to reducing embodied carbon because they play an important role in spurring new projects and setting project requirements. Prioritizing carbon early in a project reduces cost and increases the range of strategies available, while signaling markets about the importance of low-carbon materials.

AIA-CLF Embodied Carbon Toolkit for Architects

Lewis, M., Huang, M., Carlisle, S. Simonen, K. (2021), AIA-CLF Embodied Carbon Toolkit for Architects, Carbon Leadership Forum and AIA National. 

View Publication

Abstract

The AIA-CLF Embodied Carbon Toolkit for Architects serves to provide architects an overview and the necessary steps to be taken to reduce embodied carbon in their projects. This resource is divided into three parts, introducing the necessary steps and resources to take in reducing embodied carbon. This resource intends to empower building designers by:
-introducing embodied carbon and discussing its significance in furthering architects’ influence in decarbonizing the building industry.
-providing an understanding of measuring embodied carbon through the methodology of a life cycle assessment.
-equipping them with strategies to reduce embodied carbon in their own projects.
-incorporating additional resources for implemented strategies and tools that this resource examines.

Developing an Embodied Carbon Policy Reduction Calculator

Benke, B., Lewis, M., Carlisle, S., Huang, M., and Simonen, K. (2022). Developing an Embodied Carbon Policy Reduction Calculator. Carbon Leadership Forum, University of Washington. Seattle, WA.  https://hdl.handle.net/1773/48566

View Publication

Abstract

A growing number of cities are committed to tackling the urgent challenge of their built environment carbon footprint through their policies and programs. 110 cities took the Cities Race to Zero Clean Construction pledges to reduce embodied emissions in their policies and programmes in 2021, and 40 leading cities are participating in the C40 Clean Construction programme and mayors are setting the direction of travel by signing the Clean Construction Declaration, which requires collective action to halve embodied emissions by 2030.

However, embodied carbon is a new policy area for many cities and the lack of city-level data on embodied carbon is a significant barrier for policymakers to gain political support and make informed decisions. The goal of developing an embodied carbon policy reduction calculator is to address these challenges by:
-Modeling the potential embodied carbon reduction of a selected number of policies to give cities the values they need to make informed decisions;
-Allowing for comparison of emissions reduction policies for embodied carbon by key target dates (2030 and 2050) to assess the largest opportunities for impact;
-Evaluating which policies may be required to meet embodied carbon reduction targets, such as those set by city or regional climate action plans; and
-Ultimately enabling cities to make the case for and adopt policies to reduce embodied carbon.

Buy Clean Buy Fair Washington Project: Final Report

Huang, M., Lewis, M., Escarcega, P., Escarcega, E., Torres, M., Waterstrat, H., Kinder-Pyle, I., Simonen, K. (2022). Buy Clean Buy Fair Washington Project: Final Report. Carbon Leadership Forum and Washington State Department of Commerce.

View Publication

Abstract

The Buy Clean Buy Fair (BCBF) Washington Project was a pilot study commissioned by the Washington State Legislature in 2021. This project was funded by two budget provisos that required the University of Washington (UW) College of Built Environments’ Carbon Leadership Forum (CLF) to:
-Develop a reporting database to collect environmental and labor information from state construction projects. For this project, the database is a prototype, meant for testing and demonstration purposes only.
-Conduct a case study using pilot projects. Five projects were enlisted to test out and provide feedback on the data reporting process.

Greenhouse Gas Emissions Inventory from Roadway Construction: Case Study for the Washington State Department of Transportation

Ashtiani, M. Z., Huang, M., Lewis, M. C., Palmeri, J., & Simonen, K. (2024). Greenhouse Gas Emissions Inventory from Roadway Construction: Case Study for the Washington State Department of Transportation. Transportation Research Record, 0(0). https://doi.org/10.1177/03611981241233278

View Publication

Abstract

Recent emphasis on actions to reduce greenhouse gas (GHG) emissions has pushed many state departments of transportation (DOTs) to develop carbon accounting practices compatible with their current standard data collection and storage guidelines. Once accurate and reliable accounting of GHG emissions is established, strategies can be formed that could help mitigate the adverse environmental impacts of materials used by state DOTs. To date, the Washington State Department of Transportation (WSDOT) has not conducted comprehensive research on the embodied carbon within its construction material usage (i.e., upstream Scope 3 emissions inventory of procured materials) with most previous carbon accounting practices being focused on Scope 1 and Scope 2 emissions (i.e., the carbon footprint of direct and indirect energy usage). This paper summarizes the results of a life cycle assessment on the agency-wide material procurements and construction operations that emit GHGs at WSDOT as a case study. This study uses several data sources from WSDOT in conjunction with publicly available life cycle emissions factor data to estimate GHG emissions attributed to the materials used to build and maintain roadways under WSDOT’s jurisdiction. Results indicate that upstream Scope 3 emissions for WSDOT as an agency is a significant contributor to its overall GHG emissions inventory. Specifically, between 2017 and 2022, this paper estimates an average annual upstream Scope 3 emissions of 310,000 metric tons of CO2 equivalents, which translates to 56% of the total annual GHG emissions including Scope 1 and 2 emissions.

Environmental Benefits of Using Hybrid CLT Structure in Midrise Non-Residential Construction: An LCA Based Comparative Case Study in the U.S. Pacific Northwest

Pierobon, Francesca; Huang, Monica; Simonen, Kathrina; Ganguly, Indroneil. (2019). Environmental Benefits of Using Hybrid CLT Structure in Midrise Non-Residential Construction: An LCA Based Comparative Case Study in the U.S. Pacific Northwest. Journal Of Building Engineering, 26.

View Publication

Abstract

In this study, the cradle-to-gate environmental impact of a hybrid, mid-rise, cross-laminated timber (CLT) commercial building is evaluated and compared to that of a reinforced concrete building with similar functional characteristics. This study evaluates the embodied emissions and energy associated with building materials, manufacturing, and construction. Two alternative designs are considered for fire protection in the hybrid CLT building: 1) a 'fireproofing design', where gypsum wallboard is applied to the structural wood; and 2) a 'charring design', where two extra layers of CLT are added to the panel. The life cycle environmental impacts are assessed using TRACI 2.1 and the total primary energy is evaluated using the Cumulative Energy Demand impact method. Results show that an average of 26.5% reduction in the global warming potential is achieved in the hybrid CLT building compared to the concrete building, excluding biogenic carbon emissions. Except ozone depletion, where the difference in impact between scenarios is < 1%, replacing fireproofing with charring is beneficial for all impact categories. The embodied energy assessment of the building types reveals that, on average, the total primary energy in the hybrid CLT buildings and concrete building are similar. However, the non-renewable energy (fossil-based) use in the hybrid CLT building is 8% lower compared to that of the concrete building. As compared to the concrete building, additional 1,556 tCO(2)(e) and 2,567 tCO(2e) are stored in the wood components of the building (long-term storage of biogenic carbon) in the scenario with fireproofing and with charring, respectively.

Keywords

Wood; Concrete; Energy; Buildings; Impacts; Cross-laminated Timber; U.s. Pacific Northwest; Life Cycle Assessment; Cumulative Energy Demand; Biogenic Carbon; Carbon Storage

A Taxonomy for Whole Building Life Cycle Assessment (WBLCA)

Rodriguez, Barbara X.; Simonen, Kathrina; Huang, Monica; De Wolf, Catherine. (2019). A Taxonomy for Whole Building Life Cycle Assessment (WBLCA). Smart And Sustainable Built Environment, 8(3), 190 – 205.

View Publication

Abstract

Purpose The purpose of this paper is to present an analysis of common parameters in existing tools that provide guidance to carry out Whole Building Life Cycle Assessment (WBLCA) and proposes a new taxonomy, a catalogue of parameters, for the definition of the goal and scope (G&S) in WBLCA. Design/methodology/approach A content analysis approach is used to identify, code and analyze parameters in existing WBLCA tools. Finally, a catalogue of parameters is organized into a new taxonomy. Findings In total, 650 distinct parameter names related to the definition of G&S from 16 WBLCAs tools available in North America, Europe and Australia are identified. Building on the analysis of existing taxonomies, a new taxonomy of 54 parameters is proposed in order to describe the G&S of WBLCA. Research limitations/implications The analysis of parameters in WBLCA tools does not include Green Building Rating Systems and is only limited to tools available in English. Practical implications This research is crucial in life cycle assessment (LCA) method harmonization and to serve as a stepping stone to the identification and categorization of parameters that could contribute to WBLCA comparison necessary to meet current global carbon goals. Social implications The proposed taxonomy enables architecture, engineering and construction practitioners to contribute to current WBLCA practice. Originality/value A study of common parameters in existing tools contributes to identifying the type of data that is required to describe buildings and contribute to build a standardized framework for LCA reporting, which would facilitate consistency across future studies and can serve as a checklist for practitioners when conducting the G&S stage of WBLCA.

Keywords

Content Analysis; Taxonomy; Lca; Lca Tools; Tools For Practitioners; Whole Building Life Cycle Assessment

Comparative Environmental Analysis of Seismic Damage in Buildings

Huang, M.; Simonen, K. (2020). Comparative Environmental Analysis of Seismic Damage in Buildings. Journal Of Structural Engineering, 146(2).

View Publication

Abstract

In studying the environmental impacts of buildings, earthquake hazards are rarely considered, but their environmental impacts can be significant. This case study paper demonstrates how the US Federal Emergency Management Agency's Performance Assessment Calculation Tool (PACT) can be used to analyze the environmental impacts of buildings using probabilistic seismic hazard assessment. PACT was used to evaluate 10 case study buildings that varied by five types of lateral systems and two risk categories. For each building, PACT generated 1,000 realizations at five earthquake intensities. The resulting environmental impacts were analyzed according to their distribution, median, and average values, and the differences among building component types, risk categories, and lateral force-resisting systems were explored. In this study, building components that were categorized under Exterior Enclosures, Interior Finishes, and Heating, Ventilation, and Air-Conditioning (HVAC) produced notably higher environmental impacts in response to seismic damage, and their vulnerability to displacement- or acceleration-induced damage could be attributed to the characteristics of the lateral systems. Although these observations are notable, they should not be taken as universally applicable to all buildings. Instead, these findings exemplify how the environmental impact results from PACT can be analyzed and interpreted to address both the seismic and environmental aspects of building design. (C) 2019 American Society of Civil Engineers.

Keywords

Impact

Mechanical, Electrical, Plumbing and Tenant Improvements over the Building Lifetime: Estimating Material Quantities and Embodied Carbon for Climate Change Mitigation

Rodriguez, Barbara X.; Huang, Monica; Lee, Hyun Woo; Simonen, Kathrina; Ditto, Jim. (2020). Mechanical, Electrical, Plumbing and Tenant Improvements over the Building Lifetime: Estimating Material Quantities and Embodied Carbon for Climate Change Mitigation. Energy And Buildings, 226.

View Publication

Abstract

The building industry is expanding its ability to mitigate the environmental impacts of buildings through the application of life cycle assessment (LCA). Most building LCA studies focus on core and shell (C&S) and rarely assess mechanical, electrical, and plumbing (MEP) and tenant improvements (TI). However, C&S typologies in the commercial sector pose particular challenges to achieving net zero carbon due to the numerous renovations these building undergo through during their service life. MEP and TI are installed multiple times over the lifetime of commercial buildings leading to cumulative environmental impact caused by increasing material quantities and embodied carbon (EC). This study aimed to establish a preliminary range of material quantities and embodied carbon impacts for MEP and TI components, focusing on commercial office buildings in the Pacific Northwest. The first research stage involved quantifying material quantities while a second stage aimed to calculate Embodied Carbon Coefficients (ECC) and LCA impacts using different data sources. The embodied carbon estimates ranged from 40 to 75 kg CO(2)e/m(2) for MEP and 45-135 kg CO(2)e/m(2) for TI. However, with recurring instalments during a life span of 60 years the impacts become comparable to known impacts of core and shell systems. (C) 2020 Elsevier B.V. All rights reserved.

Keywords

Embodied Carbon; Life Cycle Assessment; Tenant Improvement; Mechanical; Electrical And Plumbing

Monica Huang

Monica Huang is a research engineer for the Carbon Leadership Forum at the University of Washington with expertise in environmental life cycle assessment (LCA). Recent research topics include the environmental impact of housing, optimizing tall wood structures, and developing data on the environmental impact of earthquake damage. She was also the lead author for a guide on the use of LCA in design and construction practice. Past research experience includes diverse topics such as astronomy, electronic waste, and sea level rise.  As a graduate student, she developed the Port of Seattle’s first study on the impacts of sea level rise on seaport structures.