Zhang, Lei; Hong, Jinhyun; Nasri, Arefeh; Shen, Qing. (2012). How Built Environment Affects Travel Behavior: A Comparative Analysis of the Connections between Land Use and Vehicle Miles Traveled in US Cities. Journal of Transport and Land Use, 5(3).
View Publication
Abstract
Mixed findings have been reported in previous research regarding the impact of built environment on travel behavior, i.e. statistically and practically significant effects found in a number of empirical studies and insignificant correlations shown in many other studies. It is not clear why the estimated impact is stronger or weaker in certain urban areas, and how effective a proposed land use change/policy will be in changing certain travel behavior. This knowledge gap has made it difficult for decision makers to evaluate land use plans and policies according to their impact on vehicle miles traveled (VMT), and consequently their impact on congestion mitigation, energy conservation, and pollution and green house gas emission reduction. This research has several objectives: (1) Re-examine the effects of built-environment factors on travel behavior, in particular VMT in five U.S. metropolitan areas grouped into four case study areas; (2) Develop consistent models in all case study areas with the same model specification and datasets to enable direct comparisons; (3) Identify factors such as existing land use characteristics and land use policy decision-making processes that may explain the different impacts of built environment on VMT in different urban areas; and (4) Provide a prototype tool for government agencies and decision-makers to estimate the impact of proposed land use changes on VMT. The four case study areas include Seattle, WA; Richmond-Petersburg and Norfolk-Virginia Beach, VA; Baltimore, MD; and Washington DC. Our empirical analysis employs Bayesian multilevel models with various person-level socio-economic and demographic variables and five built-environment factors including residential density, employment density, entropy (measuring level of mixed-use development), average block size (measuring transit/walking friendliness), and distance to city center (measuring decentralization and level of infill development). Our findings show that promoting compact, mixed-use, small-block and infill developments can be effective in reducing VMT per person in all four case study areas. However, the effectiveness of land use plans and policies encouraging these types of land developments is different both across case study areas and within the same case study area. We have identified several factors that potentially influence the connection between built environment shifts and VMT changes including urban area size, existing built environment characteristics, transit service coverage and quality, and land use decision-making processes.
Keywords
Built environment; Land use change; Travel behavior; Vehicle miles traveled (VMT); Multilevel Bayesian model; U.S. urban transportation planning policy
Pan, H., Shen, Q., & Zhao, T. (2013). Travel and Car Ownership of Residents near New Suburban Metro Stations in Shanghai, China. Transportation Research Record, 2394(1), 63–69.
View Publication
Abstract
Large cities in China are building extensive rail transit systems in combination with transit-oriented development in suburban areas, so that public transportation can play a leading role in supporting rapid urban expansion. Shanghai, China has been a leader in this planning approach. Shanghai's experience can be valuable for other cities facing similar pressures of urbanization, suburbanization, and motorization while striving to improve livability and reduce greenhouse gas emissions. To gain useful insights from Shanghai, a travel survey of residents in a recently developed suburban metro station area was conducted to examine how the city's mass rapid transit (MRT) has influenced residents’ travel and car ownership. With statistical methods, including logistic regression, it was found that (a) MRT was generally adequate in supporting the station area's economic relationships with the central city and local employment locations; (b) a high percentage of residents intended to commute by the MRT when they moved to the suburban station area, and their original intention positively influenced their current travel and car ownership; and (c) rail transit may help temporarily reduce the pace of motorization in households near suburban metro stations by delaying a car purchase and lowering the probability of car use in commuting. However, it was also found that car ownership had been increasing quite rapidly despite the positive effects of a much expanded and improved metro system, and that once a person owned a car, he or she would most likely drive to work.
Levine, J., Grengs, J., Shen, Q., & Shen, Q. (2012). Does Accessibility Require Density or Speed?. Journal of the American Planning Association, 78(2), 157–172.
View Publication
Abstract
Problem, research strategy, and findings: Advocates of accessibility as a transportation performance metric often assert that it requires higher density. Conversely, traditional transportation planning methods have valued speed per se as an indicator of success in transportation. In examining these claims, we make two methodological innovations. The first is a new intermetropolitan gravity-based accessibility metric. Second, we decompose the impact of density on accessibility to highlight the distinct opposing influences of speed and proximity in a manner that illustrates different families of relationships between these two factors. This reveals that denser metropolitan regions have slower travel speeds but greater origin-destination proximity. The former effect tends to degrade accessibility while the latter tends to enhance it. Despite theoretical reasons to expect that the speed effect dominates, results suggest that the proximity effect dominates, rendering the denser metropolitan areas more accessible.
Takeaway for practice: Having destinations nearby, as when densities are high, offers benefits even when the associated congestion slows traffic. Where land use policy frequently seeks to support low-development densities in part in an attempt to maintain travel speeds and forestall traffic congestion, our findings suggest that compact development can often improve transportation outcomes.
Research support: Environmental Protection Agency project RD-83334901-0, FHWA Cooperative Agreement Number: DTFH61-07-H-00037, and the Graham Environmental Sustainability Institute at the University of Michigan.
Keywords
accessibility; mobility; speed; proximity; transportation planning
Pan, H., Shen, Q., & Liu, C. (2011).. Transit-Oriented Development at the Urban Periphery: Insights from a Case Study in Shanghai, China. Transportation Research Record: Journal of the Transportation Research Board, 2245(1), 95–102.
View Publication.
Abstract
Major cities in China are extending rail transit into the urban periphery to counter urban growth and suburbanization that are automobile-driven and automobile-dependent. In the meantime, transit-oriented development (TOD) has been adopted widely in Chinese cities. Given the adoption of the TOD concept by many rail transit station areas at the peripheries of metropolitan regions, it is imperative to explore how TOD can be applied appropriately there. In this study, two station areas were examined in Songjiang, a district located approximately 30 km from the city center of Shanghai, China. These station areas have developed according to some basic TOD principles, and, in many important ways, they are representative of newly developed rail transit station areas in Shanghai and in other major Chinese cities. The conduct of a questionnaire survey allowed for investigation of resident travel behavior, assessment of the effectiveness of the TOD application, and discussion of how TOD should be adapted to peripheral locations in a large and complex metropolitan region. The study concluded that planners must carefully substantiate the basic TOD concept in connection with this particular kind of application setting. Careful consideration should be paid to mixed land use, differentiated density, and to pedestrian and bicycle travel and their connection with rail transit. Planners also must pay close attention to each peripheral area's economic and social conditions, as well as its relationships with the central city and with other parts of the metropolitan region. This case study not only provided timely feedback on current planning practice in Shanghai and other Chinese cities but also contributed to the literature on the adaptation of TOD to local circumstances.
The Mobility Innovation Center announced that Qing Shen, professor of Urban Design & Planning and an expert in transportation planning and policy, has received a $100,000 award to study commuting patterns and develop a model to understand the effect of telework and flexible scheduling. The project will build off the existing Commute Trip Reduction (CTR) survey for employers who are in the CTR program as required by state law in the central city portion of Seattle. In addition, a complementary…
Chen, Peng; Shen, Qing. (2016). Built Environment Effects on Cyclist Injury Severity in Automobile-Involved Bicycle Crashes. Accident Analysis & Prevention, 86, 239 – 246.
View Publication
Abstract
This analysis uses a generalized ordered logit model and a generalized additive model to estimate the effects of built environment factors on cyclist injury severity in automobile-involved bicycle crashes, as well as to accommodate possible spatial dependence among crash locations. The sample is drawn from the Seattle Department of Transportation bicycle collision profiles. This study classifies the cyclist injury types as property damage only, possible injury, evident injury, and severe injury or fatality. Our modeling outcomes show that: (1) injury severity is negatively associated with employment density; (2) severe injury or fatality is negatively associated with land use mixture; (3) lower likelihood of injuries is observed for bicyclists wearing reflective clothing; (4) improving street lighting can decrease the likelihood of cyclist injuries; (5) posted speed limit is positively associated with the probability of evident injury and severe injury or fatality; (6) older cyclists appear to be more vulnerable to severe injury or fatality; and (7) cyclists are more likely to be severely injured when large vehicles are involved in crashes. One implication drawn from this study is that cities should increase land use mixture and development density, optimally lower posted speed limits on streets with both bikes and motor vehicles, and improve street lighting to promote bicycle safety. In addition, cyclists should be encouraged to wear reflective clothing. (C) 2015 Elsevier Ltd. All rights reserved.
Keywords
Cycling Injuries; Traffic Accidents; Transportation Planning; Data Analysis; Employment; Built Environment; Cyclist Injury Severity; Generalized Additive Model; Generalized Ordered Logit Model; Ordered Response Model; United-states; Helmet; Frameworks; Driver; Risk
Shen, Qing; Chen, Peng; Pan, Haixiao. (2016). Factors Affecting Car Ownership and Mode Choice in Rail Transit-Supported Suburbs of a Large Chinese City. Transportation Research Part A: Policy & Practice, 94, 31 – 44.
View Publication
Abstract
As Chinese cities continue to grow rapidly and their newly developed suburbs continue to accommodate most of the enormous population increase, rail transit is seen as the key to counter automobile dependence. This paper examines the effects of rail transit-supported urban expansion using travel survey data collected from residents in four Shanghai suburban neighborhoods, including three located near metro stations. Estimated binary logit model of car ownership and nested logit model of commuting mode choice reveal that: (1) proximity to metro stations has a significant positive association with the choice of rail transit as primary commuting mode, but its association with car ownership is insignificant; (2) income, job status, and transportation subsidy are all positively associated with the probabilities of owning car and driving it to work; (3) higher population density in work location relates positively to the likelihood of commuting by the metro, but does not show a significant relationship with car ownership; (4) longer commuting distance is strongly associated with higher probabilities of riding the metro, rather than driving, to work; (5) considerations of money, time, comfort, and safety appear to exert measurable influences on car ownership and mode choice in the expected directions, and the intention to ride the metro for commuting is reflected in its actual use as primary mode for journey to work. These results strongly suggest that rail transit-supported urban expansion can produce important positive outcomes, and that this strategic approach can be effectively facilitated by transportation policies and land use plans, as well as complemented by timely provision of high quality rail transit service to suburban residents. (C) 2016 Elsevier Ltd. All rights reserved.
Keywords
Railroads; Public Transit; Choice Of Transportation; Automobile Ownership; Transportation; Suburbanization; China; Automobile Dependence; Large Chinese Cities; Rail Transit; Shanghai; Urban Expansion; Built Environment; Travel Behavior; Self-selection; Impact; Areas
Yang, Liya; Shen, Qing; Li, Zhibin. (2016). Comparing Travel Mode and Trip Chain Choices Between Holidays and Weekdays. Transportation Research Part A: Policy & Practice, 91, 273 – 285.
View Publication
Abstract
Choices of travel mode and trip chain as well as their interplays have long drawn the interests of researchers. However, few studies have examined the differences in the travel behaviors between holidays and weekdays. This paper compares the choice of travel mode and trip chain between holidays and weekdays tours using travel survey data from Beijing, China. Nested Logit (NL) models with alternative nesting structures are estimated to analyze the decision process of travelers. Results show that there are at least three differences between commuting-based tours on weekdays and non-commuting tours on holidays. First, the decision structures in weekday and holiday tours are opposite. In weekday tours people prefer to decide on trip chain pattern prior to choosing travel mode, whereas in holiday tours travel mode is chosen first. Second, holiday tours show stronger dependency on cars than weekday tours. Third, travelers on holidays are more sensitive to changes in tour time than to the changes in tour cost, while commuters on weekdays are more sensitive to tour cost. Findings are helpful for improving travel activity modeling and designing differential transportation system management strategies for weekdays and holidays. (C) 2016 Elsevier Ltd. All rights reserved.
Keywords
Choice Of Transportation; Transportation Management; Voyages & Travels; Travel Costs; Travel Time (traffic Engineering); Decision Structure; Nested Logit Model; Policy; Travel Behavior; Patterns; Behavior; Time
Pan, Haixiao; Li, Jing; Shen, Qing; Shi, Cheng. (2017). What Determines Rail Transit Passenger Volume? Implications for Transit Oriented Development Planning. Transportation Research: Part D, 57, 52 – 63.
View Publication
Abstract
Transit oriented development (TOD) has been an important topic for urban transportation planning research and practice. This paper is aimed at empirically examining the effect of rail transit station-based TOD on daily station passenger volume. Using integrated circuit (IC) card data on metro passenger volumes and cellular signaling data on the spatial distribution of human activities in Shanghai, the research identifies variations in ridership among rail transit stations. Then, regression analysis is performed using passenger volume in each station as the dependent variable. Explanatory variables include station area employment and population, residents' commuting distances, metro network accessibility, status as interchange station, and coupling with commercial activity centers. The main findings are: (1) Passenger volume is positively associated with employment density and residents' commuting distance around station; (2) stations with earlier opening dates and serving as transfer nodes tend to have positive association with passenger volumes; (3) metro stations better integrated with nearby commercial development tend to have larger passenger volumes. Several implications are drawn for TOD planning: (1) TOD planning should be integrated with rail transit network planning; (2) location of metro stations should be coupled with commercial development; (3) high employment densities should be especially encouraged as a key TOD feature; and (4) interchange stations should be more strategically positioned in the planning for rail transit network.
Keywords
Railroad Passenger Traffic; Transportation; Public Transit; Volume Measurements; Smart Cards; Mathematical Models; Accessibility; Density; Rail Transit Passenger Volume; Spatial Coupling Effect; Tod; Land-use; Built Environment; Travel-demand; Mode Choice; Impacts; Distance
Chen, Peng; Shen, Qing; Childress, Suzanne. (2018). A GPS Data-based Analysis of Built Environment Influences on Bicyclist Route Preferences. International Journal Of Sustainable Transportation, 12(3), 218 – 231.
View Publication
Abstract
This study examines the effects of built environment features, including factors of land use and road network, on bicyclists' route preferences using the data from the city of Seattle. The bicycle routes are identified using a GPS dataset collected from a smartphone application named CycleTracks. The route choice set is generated using the labeling route approach, and the cost functions of route alternatives are based on principal component analyses. Then, two mixed logit models, focusing on random parameters and alternative-specific coefficients, respectively, are estimated to examine bicyclists' route choice. The major findings of this study are as follows: (1) the bicycle route choice involves the joint consideration of convenience, safety, and leisure; (2) most bicyclists prefer to cycle on shorter, flat, and well-planned bicycle facilities with slow road traffic; (3) some bicyclists prefer routes surrounded by mixed land use; (4) some bicyclists favor routes which are planted with street trees or installed with street lights; and (5) some bicyclists prefer routes along with city features. This analysis provides valuable insights into how well-planned land use and road network can facilitate efficient, safe, and enjoyable bicycling.
Keywords
Cyclists; Mobile Apps; Multiple Correspondence Analysis (statistics); Traffic Engineering; Cycling; Bicycle Route Choice; Built Environment; Labeling Routes; Mixed Logit Model; Principal Component Analysis; Smartphone GPS Data; Choice Sets; Safe Routes; Walking; Models; Health; Infrastructure; Facilities; California; Networks