Skip to content

Has Transportation Demand of Shanghai, China, Passed Its Peak Growth?

Zhao, Zhan; Zhao, Jinhua; Shen, Qing. (2013). Has Transportation Demand of Shanghai, China, Passed Its Peak Growth? Transportation Research Record, 2394, 85 – 92.

View Publication

Abstract

On the basis of four comprehensive transportation surveys in Shanghai, China, this study examined the latest trends in Shanghai's travel demand; investigated their social, economic, and spatial drivers; and compared the pace of travel demand growth in three periods: 1980s to early 1990s, early 1990s to mid-2000s, and mid-2000s to the present. The demand growth was relatively slow in the first period and then sped up in the second before it returned to a slower pace in the third period. As for trip purpose, Shanghai's travel is much more diversified than previously, with an increasing share of noncommuting trips (from 28% in 1995 to 46% in 2009). Spatially, travel demand is dispersed from the central district to peripheral districts because of urban expansion and decentralization and from Puxi (west of the Huangpu River) to Pudong (east of the Huangpu River) as a result of significant economic development of the Pudong New Area. Both spatial diffusion and purpose diversification favor the convenience and flexibility of private motor vehicles. Driven by rapid motorization, vehicle travel is growing at a much faster pace than person travel. Overall, the annual growth rate for travel demand in Shanghai reached its peak in 2004 for both person trips and vehicle trips. In absolute numbers, person trip growth has peaked, but vehicle trip growth has not. In response to the growing demand, especially rapid motorization, the local government has made tremendous investments in road infrastructure and public transit, and it has attempted to manage demand through vehicle ownership control.

Keywords

Urban; Impacts; Policy

How Does Ride-Hailing Influence Individual Mode Choice? An Examination Using Longitudinal Trip Data from the Seattle Region

Wang, Yiyuan; Moudon, Anne Vernez; Shen, Qing. (2022). How Does Ride-Hailing Influence Individual Mode Choice? An Examination Using Longitudinal Trip Data from the Seattle Region. Transportation Research Record, 2676(3), 621 – 633.

View Publication

Abstract

This study investigates the impacts of ride-hailing, which we define as mobility services consisting of both conventional taxis and app-based services offered by transportation network companies, on individual mode choice. We examine whether ride-hailing substitutes for or complements travel by driving, public transit, or walking and biking. The study overcomes some of the limitations of convenience samples or cross-sectional surveys used in past research by employing a longitudinal dataset of individual travel behavior and socio-demographic information. The data include three waves of travel log data collected between 2012 and 2018 in transit-rich areas of the Seattle region. We conducted individual-level panel data modeling, estimating independently pooled models and fixed-effect models of average daily trip count and duration for each mode, while controlling for various factors that affect travel behavior. The results provide evidence of substitution effects of ride-hailing on driving. We found that cross-sectionally, participants who used more ride-hailing tended to drive less, and that longitudinally, an increase in ride-hailing usage was associated with fewer driving trips. No significant associations were found between ride-hailing and public transit usage or walking and biking. Based on detailed travel data of a large population in a major U.S. metropolitan area, the study highlights the value of collecting and analyzing longitudinal data to understand the impacts of new mobility services.

Keywords

Shared Mobility; Ride-hailing; Longitudinal Data; Substitution Between Travel Modes; Complementarity Between Travel Modes; Services; Uber

How Do Built-Environment Factors Affect Travel Behavior? A Spatial Analysis at Different Geographic Scales

Hong, Jinhyun; Shen, Qing; Zhang, Lei. (2014). How Do Built-Environment Factors Affect Travel Behavior? A Spatial Analysis at Different Geographic Scales. Transportation, 41(3), 419 – 440.

View Publication

Abstract

Much of the literature shows that a compact city with well-mixed land use tends to produce lower vehicle miles traveled (VMT), and consequently lower energy consumption and less emissions. However, a significant portion of the literature indicates that the built environment only generates some minor-if any-influence on travel behavior. Through the literature review, we identify four major methodological problems that may have resulted in these conflicting conclusions: self-selection, spatial autocorrelation, inter-trip dependency, and geographic scale. Various approaches have been developed to resolve each of these issues separately, but few efforts have been made to reexamine the built environment-travel behavior relationship by considering these methodological issues simultaneously. The objective of this paper is twofold: (1) to better understand the existing methodological gaps, and (2) to reexamine the effects of built-environment factors on transportation by employing a framework that incorporates recently developed methodological approaches. Using the Seattle metropolitan region as our study area, the 2006 Household Activity Survey and the 2005 parcel and building data are used in our analysis. The research employs Bayesian hierarchical models with built-environment factors measured at different geographic scales. Spatial random effects based on a conditional autoregressive specification are incorporated in the hierarchical model framework to account for spatial contiguity among Traffic Analysis Zones. Our findings indicate that land use factors have highly significant effects on VMT even after controlling for travel attitude and spatial autocorrelation. In addition, our analyses suggest that some of these effects may translate into different empirical results depending on geographic scales and tour types.

Keywords

Land-use; Urban Form; Multilevel Models; Physical-activity; Neighborhood; Choice; Impact; Specification; Accessibility; Causation; Built Environment; Travel Behavior; Self-selection; Spatial Autocorrelation; Bayesian Hierarchical Model

The Influence of Street Environments on Fuel Efficiency: Insights from Naturalistic Driving

Wang, X.; Liu, C.; Kostyniuk, L.; Shen, Q.; Bao, S. (2014). The Influence of Street Environments on Fuel Efficiency: Insights from Naturalistic Driving. International Journal Of Environmental Science And Technology, 11(8), 2291 – 2306.

View Publication

Abstract

Fuel consumption and greenhouse gas emissions in the transportation sector are a result of a three-legged stool: fuel types, vehicle fuel efficiency, and vehicle miles travelled (VMT). While there is a substantial body of literature that examines the connection between the built environment and total VMT, few studies have focused on the impacts of the street environment on fuel consumption rate. Our research applied structural equation modeling to examine how driving behaviors and fuel efficiency respond to different street environments. We used a rich naturalistic driving dataset that recorded detailed driving patterns of 108 drivers randomly selected from the Southeast Michigan region. The results show that, some features of compact streets such as lower speed limit, higher intersection density, and higher employment density are associated with lower driving speed, more speed changes, and lower fuel efficiency; however, other features such as higher population density and higher density of pedestrian-scale retails improve fuel efficiency. The aim of our study is to gain further understanding of energy and environmental outcomes of the urban areas and the roadway infrastructure we plan, design, and build and to better inform policy decisions concerned with sustainable transportation.

Keywords

Travel; Consumption; Emissions; Cities; Energy; Street Environments; Fuel Efficiency; Structural Equation Modeling; Naturalistic Driving

Built Environment Effects on Cyclist Injury Severity in Automobile-Involved Bicycle Crashes

Chen, Peng; Shen, Qing. (2016). Built Environment Effects on Cyclist Injury Severity in Automobile-Involved Bicycle Crashes. Accident Analysis & Prevention, 86, 239 – 246.

View Publication

Abstract

This analysis uses a generalized ordered logit model and a generalized additive model to estimate the effects of built environment factors on cyclist injury severity in automobile-involved bicycle crashes, as well as to accommodate possible spatial dependence among crash locations. The sample is drawn from the Seattle Department of Transportation bicycle collision profiles. This study classifies the cyclist injury types as property damage only, possible injury, evident injury, and severe injury or fatality. Our modeling outcomes show that: (1) injury severity is negatively associated with employment density; (2) severe injury or fatality is negatively associated with land use mixture; (3) lower likelihood of injuries is observed for bicyclists wearing reflective clothing; (4) improving street lighting can decrease the likelihood of cyclist injuries; (5) posted speed limit is positively associated with the probability of evident injury and severe injury or fatality; (6) older cyclists appear to be more vulnerable to severe injury or fatality; and (7) cyclists are more likely to be severely injured when large vehicles are involved in crashes. One implication drawn from this study is that cities should increase land use mixture and development density, optimally lower posted speed limits on streets with both bikes and motor vehicles, and improve street lighting to promote bicycle safety. In addition, cyclists should be encouraged to wear reflective clothing. (C) 2015 Elsevier Ltd. All rights reserved.

Keywords

Cycling Injuries; Traffic Accidents; Transportation Planning; Data Analysis; Employment; Built Environment; Cyclist Injury Severity; Generalized Additive Model; Generalized Ordered Logit Model; Ordered Response Model; United-states; Helmet; Frameworks; Driver; Risk

Jan Whittington and Qing Shen funded for project examining lessons learned from high-speed rail innovation

This year, the Washington State Legislature allocated $4 million to continue work on a Cascadia Corridor high-speed rail and another $150 million to use as matching funds over the next six years to leverage federal funds available under the Infrastructure Investment and Jobs Act (IIJA). Now that there is a significant funding commitment, how can an effort in Cascadia take the lessons learned and build on the success of others? That’s what a new Mobility Innovation Center project will examine, led…

Qing Shen’s proposal among those selected for funding by PacTrans

The Pacific Northwest Transportation Consortium (PacTrans) announced in January 2021 the project proposals selected for funding. Qing Shen, Professor of Urban Design and Planning and Chair of the Interdisciplinary PhD Program in Urban Design and Planning is among those selected for project funding. Shen is working alongside Co-Principal Investigator Catherine (Casey) Gifford–Innovative Mobility Senior Planner–on the applied research project titled “Supplementing fixed-route transit with dynamic shared mobility services: a marginal cost comparison approach”. The project goal is to address a…

PhD in the Built Environment

The College of Built Environments consists of five departments that together provide one of the country’s few comprehensive built environment programs within one academic unit: Architecture, Construction Management, Landscape Architecture, Real Estate, and Urban Design and Planning. Together, this combination of departments enable faculty and students to engage almost the entire development process, from economic and environmental planning, real estate, regulatory processes, siting and design, through actual financing and construction, to facility management and adaptive reuse in subsequent stages. Thus, the college is inherently multi-disciplinary, not only in terms of the dimensions of reality that it treats, but also in regard to the specialized disciplines, methods, and practices that it employs: history, theory, cultural criticism, engineering, design, planning, urban design, energy sciences, acoustics, lighting, environmental psychology, ecology, real estate analysis, statistics, management, horticulture, soil science, law, public policy, and ethics. In addition, because of the College’s focus on comprehensive analysis and practice concerning the built environment and its interrelation with society, it is substantially engaged in interdisciplinary work with other units on campus and outside of the campus, including mechanical, civil, and electrical engineering; with public policy and the health sciences; with art and art history; with textual interpretation in the humanities; with many of the computing and digitization activities that range from digital arts to the information school and technical communications; with education and social studies and services; with sustainability and ecological programs, including urban ecology, geography, the College of Forest Resources (especially urban horticulture and urban forestry), and Ocean Science and Fisheries; with environmental and land use law.

The College’s interdisciplinary character is a good fit with the emerging trends in today’s complex world, where only a pluralistic and collaborative approach will generate the necessary learning and teaching, research, and service. If we are to provide, in the end, both disciplinary and professional means to promote environmental well-being, the diverse environmental specializations must be fully integrated. Thus, working outside traditional disciplinary and departmental categories, the College’s faculty will advance solutions to problems that demand interdisciplinary perspectives and expertise. Other UW units bring much to bear on the built environment and students are wholeheartedly encouraged to explore possible cross-campus connections both in obvious and seemingly unlikely places. The Technology and Project Design/Delivery specialization especially connects with Psychology, the Information School, Technical Communication, Computer Science and Engineering, and Industrial Engineering; the Sustainable Systems and Prototypes field with Civil Engineering, Electrical Engineering, Industrial Engineering, Mechanical Engineering, the Information School, Technical Communication, the College of Forest Resources (especially Eco-System Science and Conservation, Urban Horticulture and Urban Forestry), the Evans School of Public Affairs, Geography, Public Health, Ocean Science and Fisheries, and Social Work, Urban Ecology, and perhaps Advanced Materials and Manufacturing Processes and Nanotechnology; the area of History, Theory, and Representation with Textual Studies, Art History, Interdisciplinary Arts & Sciences at Tacoma, and Comparative History of Ideas.

Urban Design & Planning Interdisciplinary PhD

The Urban Design & Planning Interdisciplinary Ph.D. at the University of Washington is one of 39 Ph.D. programs in urban and regional planning in North America, and one of the oldest, founded in 1967.

This program brings together faculty from disciplines ranging from Architecture to Sociology to focus on the interdisciplinary study of urban problems and interventions. Covering scales from neighborhoods to metropolitan areas, the program addresses interrelationships between the physical environment, the built environment, and the social, economic, and political institutions and processes that shape urban areas. The breadth of this program permits students to pursue doctoral studies in the various aspects of urban design and planning as well as in a number of related social science, natural resource, and engineering areas.

The Program seeks to prepare scholars who can advance the state of research, practice, and education related to the built environment and its relationship to society and nature in metropolitan regions throughout the world. The program provides a strong interdisciplinary educational experience that draws on the resources of the entire University, and on the laboratory provided by the Seattle metropolitan region and the Pacific Northwest. The program emphasizes the educational values of interdisciplinarity, intellectual leadership and integrity, and the social values of equity, democracy and sustainability. It seeks to promote deeper understanding of the ways in which public decisions shape and are shaped by the urban physical, social, economic, and natural environment. The program envisions its graduates becoming leaders in the international community of researchers, practitioners and educators who focus on improving the quality of life and environment in metropolitan regions.

Northwest Center for Livable Communities

The Northwest Center’s mission is to enhance the livability of communities in the Pacific Northwest through applied research and outreach in the areas of land use planning, policy, and design; healthy communities; food security; and public participation and democracy.

The Center is a research and policy center focused on issues of environmental and economic sustainability, quality of life, and responsible governance using Washington as a model. Recognizing that the term “livability” has many different definitions and interpretations, the Center’s programs are focused on how the fields of urban planning and design, landscape architecture, and architecture work within this broader context to address livability factors.

The Center operates from the belief that the university should, in cooperation with state agencies, local governments, and community leaders, seek to improve existing social and environmental conditions through research and innovative policy development. It advocates development strategies that focus on smart and efficient land use, strong communities, high-wage, low waste jobs and economic development and public participation and accountability in government.