Skip to content

The Complexity of Urban Eco-Evolutionary Dynamics

Alberti, Marina; Palkovacs, Eric P.; Des Roches, Simone; De Meester, Luc; Brans, Kristien, I; Govaert, Lynn; Grimm, Nancy B.; Harris, Nyeema C.; Hendry, Andrew P.; Schell, Christopher J.; Szulkin, Marta; Munshi-south, Jason; Urban, Mark C.; Verrelli, Brian C. (2020). The Complexity of Urban Eco-Evolutionary Dynamics. Bioscience, 70(9), 772 – 793.

View Publication

Abstract

Urbanization is changing Earth's ecosystems by altering the interactions and feedbacks between the fundamental ecological and evolutionary processes that maintain life. Humans in cities alter the eco-evolutionary play by simultaneously changing both the actors and the stage on which the eco-evolutionary play takes place. Urbanization modifies land surfaces, microclimates, habitat connectivity, ecological networks, food webs, species diversity, and species composition. These environmental changes can lead to changes in phenotypic, genetic, and cultural makeup of wild populations that have important consequences for ecosystem function and the essential services that nature provides to human society, such as nutrient cycling, pollination, seed dispersal, food production, and water and air purification. Understanding and monitoring urbanization-induced evolutionary changes is important to inform strategies to achieve sustainability. In the present article, we propose that understanding these dynamics requires rigorous characterization of urbanizing regions as rapidly evolving, tightly coupled human-natural systems. We explore how the emergent properties of urbanization affect eco-evolutionary dynamics across space and time. We identify five key urban drivers of change-habitat modification, connectivity, heterogeneity, novel disturbances, and biotic interactions-and highlight the direct consequences of urbanization-driven eco-evolutionary change for nature's contributions to people. Then, we explore five emerging complexities-landscape complexity, urban discontinuities, socio-ecological heterogeneity, cross-scale interactions, legacies and time lags-that need to be tackled in future research. We propose that the evolving metacommunity concept provides a powerful framework to study urban eco-evolutionary dynamics.

Keywords

Habitat Modification; Seed Dispersal; Water Purification; Species Diversity; Human Behavior; Ecosystem Services; Nutrient Cycles; Cross-scale Interactions; Ecological Consequences; Contemporary Evolution; Gradient Analysis; Trophic Dynamics; Land-cover; Community; Biodiversity; Adaptation; Urban Ecology; Eco-evolutionary Dynamics; Coupled Human-natural Systems; Metacommunities; Ecology; Urbanization; Evolution; Water Treatment; Environmental Monitoring; Species Composition; Environmental Changes; Play; Food Production; Air Purification; Sustainability; Dynamic Tests; Air Monitoring; Urban Areas; Food Webs; Heterogeneity; Food Chains; Pollination; Dynamics; Complexity; Dispersal; Microclimate

Climate-Driven Habitat Change Causes Evolution in Threespine Stickleback

Roches, Simone Des; Bell, Michael A.; Palkovacs, Eric P. (2020). Climate-Driven Habitat Change Causes Evolution in Threespine Stickleback. Global Change Biology, 26(2), 597 – 606.

View Publication

Abstract

Climate change can shape evolution directly by altering abiotic conditions or indirectly by modifying habitats, yet few studies have investigated the effects of climate-driven habitat change on contemporary evolution. We resampled populations of Threespine Stickleback (Gasterosteus aculeatus) along a latitudinal gradient in California bar-built estuaries to examine their evolution in response to changing climate and habitat. We took advantage of the strong association between stickleback lateral plate phenotypes and Ectodysplasin A (Eda) genotypes to infer changes in allele frequencies over time. Our results show that over time the frequency of low-plated alleles has generally increased and heterozygosity has decreased. Latitudinal patterns in stickleback plate phenotypes suggest that evolution at Eda is a response to climate-driven habitat transformation rather than a direct consequence of climate. As climate change has reduced precipitation and increased temperature and drought, bar-built estuaries have transitioned from lotic (flowing-water) to lentic (still-water) habitats, where the low-plated allele is favoured. The low-plated allele has achieved fixation at the driest, hottest southernmost sites, a trend that is progressing northward with climate change. Climate-driven habitat change is therefore causing a reduction in genetic variation that may hinder future adaptation for populations facing multiple threats.

Keywords

Gasterosteus-aculeatus; Natural-selection; 3-spined Stickleback; Armor; Populations; Patterns; Reductions; Adaptation; Capacity; Package; Climate Change; Gasterosteus Aculeatus; Intraspecific Variation; Latitudinal Gradient; Rapid Evolution; Resurvey; Space-for-time

The Ecological and Evolutionary Consequences of Systemic Racism in Urban Environments

Schell, Christopher J.; Dyson, Karen; Fuentes, Tracy L.; Des Roches, Simone; Harris, Nyeema C.; Miller, Danica Sterud; Woelfle-Erskine, Cleo A.; Lambert, Max R. (2020). The Ecological and Evolutionary Consequences of Systemic Racism in Urban Environments. Science, 369(6510), 1446.

View Publication

Abstract

Urban areas are dynamic ecological systems defined by interdependent biological, physical, and social components. The emergent structure and heterogeneity of urban landscapes drives biotic outcomes in these areas, and such spatial patterns are often attributed to the unequal stratification of wealth and power in human societies. Despite these patterns, few studies have effectively considered structural inequalities as drivers of ecological and evolutionary outcomes and have instead focused on indicator variables such as neighborhood wealth. In this analysis, we explicitly integrate ecology, evolution, and social processes to emphasize the relationships that bind social inequities-specifically racism-and biological change in urbanized landscapes. We draw on existing research to link racist practices, including residential segregation, to the heterogeneous patterns of flora and fauna observed by urban ecologists. In the future, urban ecology and evolution researchers must consider how systems of racial oppression affect the environmental factors that drive biological change in cities. Conceptual integration of the social and ecological sciences has amassed considerable scholarship in urban ecology over the past few decades, providing a solid foundation for incorporating environmental justice scholarship into urban ecological and evolutionary research. Such an undertaking is necessary to deconstruct urbanization's biophysical patterns and processes, inform equitable and anti-racist initiatives promoting justice in urban conservation, and strengthen community resilience to global environmental change.

Keywords

New-york; Climate-change; Land-cover; Socioeconomic-status; Ecosystem Services; Oxidative Stress; Green Spaces; Gene Flow; Justice; Cities

Ecosystem Size Shapes Antipredator Trait Evolution in Estuarine Threespine Stickleback

Wasserman, Ben A.; Paccard, Antoine; Apgar, Travis M.; Des Roches, Simone; Barrett, Rowan D. H.; Hendry, Andrew P.; Palkovacs, Eric P. (2020). Ecosystem Size Shapes Antipredator Trait Evolution in Estuarine Threespine Stickleback. Oikos, 129(12), 1795 – 1806.

View Publication

Abstract

Ecosystem size is known to influence both community structure and ecosystem processes. Less is known about the evolutionary consequences of ecosystem size. A few studies have shown that ecosystem size shapes the evolution of trophic diversity by shaping habitat heterogeneity, but the effects of ecosystem size on antipredator trait evolution have not been explored. Ecosystem size may impact antipredator trait evolution by shaping predator presence (larger ecosystems have longer food chains) and habitat complexity (larger ecosystems may have more diverse habitat structure). We tested these effects using threespine stickleback from bar-built estuaries along the Central Coast of California. These stickleback populations are polymorphic forEctodysplasin-A(Eda), a gene that controls bony lateral plates used as antipredator defense. We inferredEdagenotypes from lateral plate phenotypes and show that the frequency of the complete (C) allele, which is associated with greater number of lateral plates, increases as a function of ecosystem size. Predator presence and habitat complexity are both correlated to ecosystem size. The strongest proximate predictor ofEdaallele frequencies was the presence of predatory fishes (steelhead trout and sculpin). Counter to expectations, habitat complexity did not have a strong modifying effect onEdaallele frequencies. Our results point to the importance of ecosystem size for determining predator presence as being the primary pathway to evolutionary effects. Ecosystem size has received much attention in ecology. Our work shows that it may be an important determinant of adaptive evolution in wild populations.

Keywords

Food-chain Length; Gasterosteus-aculeatus; Adaptive Radiation; Lateral Plates; Ecological Opportunity; Natural-selection; Armor; Fish; Predation; Area; Antipredator Traits; Bar-built Estuaries; Ecosystem Size; Ectodysplasin Agene; Gasterosteus Aculeatus

Socio-evolutionary Dynamics in Cities

Des Roches, Simone; Brans, Kristien, I; Lambert, Max R.; Rivkin, L. Ruth; Savage, Amy Marie; Schell, Christopher J.; Correa, Cristian; De Meester, Luc; Diamond, Sarah E.; Grimm, Nancy B.; Harris, Nyeema C.; Govaert, Lynn; Hendry, Andrew P.; Johnson, Marc T. J.; Munshi-south, Jason; Palkovacs, Eric P.; Szulkin, Marta; Urban, Mark C.; Verrelli, Brian C.; Alberti, Marina. (2021). Socio-evolutionary Dynamics in Cities. Evolutionary Applications, 14(1), 248 – 267.

View Publication

Abstract

Cities are uniquely complex systems regulated by interactions and feedbacks between nature and human society. Characteristics of human society-including culture, economics, technology and politics-underlie social patterns and activity, creating a heterogeneous environment that can influence and be influenced by both ecological and evolutionary processes. Increasing research on urban ecology and evolutionary biology has coincided with growing interest in eco-evolutionary dynamics, which encompasses the interactions and reciprocal feedbacks between evolution and ecology. Research on both urban evolutionary biology and eco-evolutionary dynamics frequently focuses on contemporary evolution of species that have potentially substantial ecological-and even social-significance. Still, little work fully integrates urban evolutionary biology and eco-evolutionary dynamics, and rarely do researchers in either of these fields fully consider the role of human social patterns and processes. Because cities are fundamentally regulated by human activities, are inherently interconnected and are frequently undergoing social and economic transformation, they represent an opportunity for ecologists and evolutionary biologists to study urban socio-eco-evolutionary dynamics. Through this new framework, we encourage researchers of urban ecology and evolution to fully integrate human social drivers and feedbacks to increase understanding and conservation of ecosystems, their functions and their contributions to people within and outside cities.

Keywords

Urban Ecology (biology); Urban Research; Urban Ecology (sociology); Social Processes; Biologists; Adaptation; Anthropogenic; Coupled Human-natural Systems; Eco-evo; Socio-ecological Systems; Urbanization; Rapid Evolution; Ecosystem Services; Long-term; Ecological Consequences; Partitioning Metrics; Evosystem Services; Genetic Diversity; Rattus-norvegicus; Local Adaptation; Urban Landscapes; Coupled Human-natural Systems; Eco-evo; Socio-ecological Systems