Méndez Echenagucia, T., Moroseos, T., & Meek, C. (2023). On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids. Energy and Buildings, 238.
View Publication.
Abstract
Embodied and operational carbon tradeoffs in building envelopes are studied. • Envelope variables include wall assemblies, WWRs, glazing and shading. • Energy decarbonization models are used to determine the 30-year operational carbon. • Results show the importance of a total carbon approach to envelope design. • Over or under insulation can result in waste of 10–150 kgCO 2 e/m2. The building envelope has a substantial influence on a building's life cycle operational and embodied carbon emissions. Window-to-wall ratios, wall assemblies, shading and glazing types, have been shown to have a significant impact on total emissions. This paper provides building designers, owners, and policy makers with actionable guidance and a prioritization framework for establishing co-optimized lifecycle carbon performance of facade assembly components in a broad spectrum of climate contexts and energy carbon intensities. A large parametric study of building envelopes is conducted using building performance simulation and cradle-to-gate embodied carbon calculations in 6 US cities. The authors derive the total carbon emissions optimization for commercial office and residential space types using standard code-reference models and open-source lifecycle data. Comparisons between optimal total carbon solutions and (i) optimal operational carbon and (ii) minimum required assemblies, show the impact of under and over investing in envelope-related efficiency measures for each climate. Results show how the relationship between embodied and operational carbon is highly localized, that optimal design variables can vary significantly. In low carbon intensity energy grids, over investment in envelope embodied carbon can exceed as 10 kgCO 2 e/m2, while under investment in high carbon intensity grids can be higher than 150 kgCO 2 e/m2.
Keywords
Building performance simulation; Embodied carbon; Operational carbon; Parametric modeling
Echenagucia, Tomas Mendez; Moroseos, Teresa; Meek, Christopher. (2023). On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids. Energy & Buildings, 278.
View Publication
Abstract
The building envelope has a substantial influence on a building's life cycle operational and embodied car-bon emissions. Window-to-wall ratios, wall assemblies, shading and glazing types, have been shown to have a significant impact on total emissions. This paper provides building designers, owners, and policy makers with actionable guidance and a prioritization framework for establishing co-optimized lifecycle carbon performance of facade assembly components in a broad spectrum of climate contexts and energy carbon intensities. A large parametric study of building envelopes is conducted using building perfor-mance simulation and cradle-to-gate embodied carbon calculations in 6 US cities. The authors derive the total carbon emissions optimization for commercial office and residential space types using standard code-reference models and open-source lifecycle data. Comparisons between optimal total carbon solu-tions and (i) optimal operational carbon and (ii) minimum required assemblies, show the impact of under and over investing in envelope-related efficiency measures for each climate. Results show how the rela-tionship between embodied and operational carbon is highly localized, that optimal design variables can vary significantly. In low carbon intensity energy grids, over investment in envelope embodied carbon can exceed as 10 kgCO2e/m2, while under investment in high carbon intensity grids can be higher than 150 kgCO2e/m2.Published by Elsevier B.V.
Keywords
Facades; Building-integrated Photovoltaic Systems; Carbon Emissions; Carbon; Building Performance; Building Designers; Building Envelopes; Refuse Containers; Building Performance Simulation; Embodied Carbon; Operational Carbon; Parametric Modeling; Environmental-impact; Search
Launching the Inspire Fund: An early step for CBE’s Office of Research “For a small college, CBE has a broad range of research paradigms, from history and arts, to social science and engineering.” — Carrie Sturts Dossick, Associate Dean of Research Upon taking on the role of Associate Dean of Research, Carrie Sturts Dossick, professor in the Department of Construction Management, undertook listening sessions to learn about the research needs of faculty, staff and students across the College of Built…
ARPA-E announced $5 million in funding to two universities—the University of Washington and University of California, Davis—working to develop life cycle assessment tools and frameworks associated with transforming buildings into net carbon storage structures. The funding is part of the Harnessing Emissions into Structures Taking Inputs from the Atmosphere (HESTIA) Exploratory Topic. Parametric Open Data for Life Cycle Assessment (POD | LCA) – $3,744,303 The University of Washington’s Carbon Leadership Forum will develop a rigorous and flexible parametric Life Cycle Assessment (LCA)…
Teresa Moroseos is a Research Engineer at the Integrated Design Lab (IDL) in the University of Washington’s (UW) College of Built Environments and a Teaching Associate in the Department of Architecture. She is a licensed architect in the State of Washington. Her research includes studying the impact of extreme weather events on building energy use and thermal comfort, and optimizing energy use, daylighting, indoor air quality, and the operational lifecycle impacts of buildings. In her role at the UW IDL, she works as a consultant on design projects throughout the United States and provides technical expertise to improve daylighting and energy performance for retrofits and new construction. Teresa regularly teaches at the University of Washington in topics of climate analysis, energy principals for buildings, passive solar design, and daylight simulations.
The Integrated Design Lab (IDL) is operated by the Department of Architecture in the College of Built Environments at the University of Washington. IDL’s mission is to discover solutions that overcome the most difficult building performance barriers, and to meet the building industry’s goals of moving towards radically higher performing buildings and healthy urban environments. The IDL advances their mission through interconnected research, technical assistance, and professional educational and tour programs.
The Integrated Design Lab carries out research to advance knowledge and policies that support the healthiest and highest performing buildings and cities. It measures and analyzes modeled and actual building performance data so as to influence the building industry’s understanding of how to radically improve the design and operation performance of buildings. The performance research includes energy efficiency, daylighting, electric lighting, occupant energy use behavior, human health and productivity in buildings, and advanced building management systems.
The Integrated Design Lab connects its discoveries and the transformative knowledge of others to the building industry and public through education. These offerings include classes, workshops, focus-group meetings, leadership forums, and exhibits of breakthrough technologies intended to transform the market for the highest performing buildings by reaching out and educating current and future leaders on meeting 21st century building performance challenges with the knowledge and policies that favor renewable and regenerative buildings, neighborhoods and cities.
The IDL is a self-sustaining organization that includes interdisciplinary faculty, staff, students, professional collaborators, and partner organizations.
The University of Washington’s Center for Integrated Design (UW CID) is a Research Center operated by the Department of Architecture in the College of Built Environments at the University of Washington. Its research organization, the Integrated Design Lab (IDL), is a self-sustaining lab that includes interdisciplinary faculty, staff, students, professional collaborators, and partner organizations.
Our mission is to discover solutions that overcome the most difficult building performance barriers, and to meet the building industry’s goals of moving towards radically higher performing buildings and healthy urban environments. We advance our mission through interconnected research, technical assistance, and education and outreach.