Kim, M., & Kim, Y.-W. (2024). Applications of blockchain for construction project procurement. Automation in Construction, 165, 105550-. https://doi.org/10.1016/j.autcon.2024.105550
View Publication
Abstract
Blockchain technology has shown potential in enhancing project performance by instilling trust in data sharing among stakeholders, thereby encouraging the stakeholders to ensure a strategic acquisition and resource management through procurement activities. However, despite the recent research efforts on blockchain in the construction sector, there is a lack of knowledge of the status quo in that barely any research investigated the synergy of blockchain and procurement by recognizing the inextricable linkage between procurement management and project delivery system. This paper conducts a systematic review of 54 articles to assess blockchain's potential in addressing issues inherent in the current organizational structures and collaborative efforts. Findings offer profound insight into the current landscape of procurement-specific blockchain research, highlighting areas needing attention. This paper identified opportunities in construction procurement by investigating the extent to which the technology is integrated into the current project management context emphasizing integration and collaboration.
Keywords
Blockchain; Procurement; Construction industry; Procurement process; Project delivery system; Literature review
Kim, Y.-W., & Rhee, B.-D. (2024). Incentive-based coordination for scheduled delivery in prefab construction. Construction Management and Economics, 1–16. https://doi.org/10.1080/01446193.2024.2305763.
View Publication
Abstract
An increasing number of projects are adopting prefabrication to economize on time, labor, and materials in fixed-position layout operations, such as construction, ship building, and aircraft manufacturing. In such contexts, independent contractor and fabricator make interdependent decisions, which calls for prudent supply chain management because performance relies on coordination between their decisions. Many studies have developed integrated systems and propose various algorithms for scheduling efficiency and reliability. Nevertheless, they pay scant attention to conflicting interests amongst independent partners, which may result in subpar performance not only for the supplier but for the contractor as well. Coordination of conflicting interests has been extensively studied in economics and supply chain management; yet, those studies focus on order-quantity decisions under demand uncertainty for profit maximization, while managers in fixed-position operations are more concerned about delivery decisions under scheduling uncertainty for cost minimization. We consider the case of construction and explore a contractual scheme that aligns the agents' decisions for coordination in a construction supply chain. Specifically, we propose a supplier rebate for coordination: the supplier grants a rebate if the contractor accepts the shipment in accordance with the delivery schedule that the contractor initially chose. We show that the optimal rebate fully coordinates the supply chain to minimize the joint supply chain costs. Thus, both the contractor and supplier benefit from the coordination by negotiating a mutually acceptable way to allocate the savings in joint costs between them. We further show that the rebate motivates the contractor to enhance its work scheduling.
Keywords
Construction supply chain; coordination; delivery schedule reliability; prefabrication; rebate for scheduled delivery
Kim, S., & Kim, Y. (2023). Allocating Safety Cost using in Construction Site. Tehnički Glasnik, 17(4), 594–597. https://doi.org/10.31803/tg-20230104151203
View Publication
Abstract
Environments, Health, and Safety (EHS) activities are strongly linked to the concept of sustainability in the current construction industry and consequently absorb more financial and managerial attention. One of major obstacles in EHS costing is that most EHS costs are buried in general overhead costs. Therefore, EHS costs lacks transparency, making it hard to allocate EHS costs to relevant construction projects. This paper present a recent study in which a method of activity-based costing (ABC) has been applied to safety costs at a contractor's home office. The list of safety activities, their cost drivers as well as their cost information on one of Korean general contractor is provided. The authors expect that the application of ABC will improve transparency in costing EHS costs as well as allocating EHS costs to projects.
Keywords
budget; safety accident; safety management; safety law
Kim, M., Zhao, X., Kim, Y.-W., & Rhee, B.-D. (2023). Blockchain-enabled supply chain coordination for off-site construction using Bayesian theory for plan reliability. Automation in Construction, 155, 105061–. https://doi.org/10.1016/j.autcon.2023.105061
View Publication
Abstract
The potential of blockchain is being widely explored within the construction industry, particularly for transparent communication and information sharing. However, only limited research has focused on implementing blockchain to address the challenge of aligning conflicting interests among independent agents, specifically, supply chain coordination. This paper develops a blockchain-enabled supply chain coordination system that facilitates the alignment of diverse decisions made by stakeholders in an off-site construction supply chain. To achieve this goal, Bayesian updating is employed to estimate the probabilistic distribution of plan reliability, enabling the calculation of a supplier rebate that incentivizes the contractor to schedule deliveries aimed at minimizing joint supply chain costs. Additionally, the paper describes a blockchain-enabled system that allows practitioners to measure plan reliability. The research findings demonstrate that the blockchain-enabled supply chain coordination system fosters shared common knowledge among project stakeholders and facilitates real-time updates of changes in the contractor's plan reliability, aligning the interests of both the supplier and contractor.
Keywords
Supply chain coordination; Bayesian updating; Plan reliability; Rebate pricing; Blockchain; Smart contracts; Off-site construction
Kim, Yong-Woo, and Rhee, Byong-Duk. (2020). The Impact of Empowering Front-Line Managers on Planning Reliability and Project Schedule Performance. Journal of Management in Engineering, 36(3).
View Publication
Abstract
This study applies empowerment theory to production planning at the level of frontline managers in a construction project. Using structural equation modeling, we investigate how empowering frontline managers impacts their planning performance. In contrast to prior studies, we find that although psychological empowerment of frontline managers has no direct effect on their production planning reliability or scheduling performance, it has an indirect effect on planning reliability and scheduling performance, as long as the organization supports the empowerment structurally during production planning. This implies that a project manager should provide frontline managers at the operational level with proper formal and informal authority over workflow development, shielding, and resource allocation when planning production in order to enhance job performance through psychological empowerment. This study contributes to the body of knowledge on construction management by exploring the impact of psychological and structural empowerment of frontline managers on their performance of production planning reliability and scheduling performance.
Keywords
Organizations, Managers, Structural models, Scheduling, Structural reliability, Construction management, Human and behavioral factors, Resource allocation
Kim, Sang-Chul; Kim, Yong-Woo. (2014). Computerized Integrated Project Management System for a Material Pull Strategy. Journal Of Civil Engineering And Management, 20(6), 849 – 863.
View Publication
Abstract
The purpose of this paper is to present a computerized integrated project management system and report results of a survey on the effectiveness of the system. The system consists of a scheduling system, material management system, labor/equipment system, and safety/quality control system. The backbone system is a scheduling system that adopts a production planning system and a project scheduling system. The lowest level in the scheduling system is a daily work management system, which is linked to each functional management system (i.e. material management system, labor/equipment system, and safety/quality control system). The paper focuses on the material management and scheduling systems to implement a material pull system to reduce material inventories on site. Details of material management and scheduling systems are discussed, and a sample application is presented to demonstrate the features of the proposed computer application system. The paper presents practitioners and researchers with a practical tool to integrate material management and scheduling systems for site personnel.
Keywords
Construction; Lean Construction; Material Management System; Integrated System; Daily Work Management
Kim, Taehoon; Kim, Yong-woo; Lee, Dongmin; Kim, Minju. (2022). Reinforcement Learning Approach To Scheduling Of Precast Concrete Production. Journal Of Cleaner Production, 336.
View Publication
Abstract
The production scheduling of precast concrete (PC) is essential for successfully completing PC construction projects. The dispatching rules, widely used in practice, have the limitation that the best rule differs according to the shop conditions. In addition, mathematical programming and the metaheuristic approach, which would improve performance, entail more computational time with increasing problem size, let alone its models being revised as the problem size changes. This study proposes a PC production scheduling model based on a reinforcement learning approach, which has the advantages of a general capacity to solve various problem conditions with fast computation time and good performance in real-time. The experimental study shows that the proposed model outperformed other methods by 4-12% of the total tardiness and showed an average winning rate of 77.0%. The proposed model could contribute to the successful completion of off-site construction projects by supporting the stable progress of PC construction.
Keywords
Precast Concrete; Reinforcement Learning; Deep Q -network; Production Scheduling; Minimize; Model
Kang, Goune; Kim, Taehoon; Kim, Yong-woo; Cho, Hunhee; Kang, Kyung-in. (2015). Statistical Analysis of Embodied Carbon Emission for Building Construction. Energy And Buildings, 105, 326 – 333.
View Publication
Abstract
Buildings are significant contributors to the greenhouse effect through emission of considerable carbon dioxide during their life cycle. Life cycle carbon resulting from buildings consists of two components: operational carbon (OC) and embodied carbon (EC). Recent studies have shown the growing significance of EC because much effort has already been invested into reducing OC. In this context, it is important to estimate and reduce EC. Because of the variability and uncertainty contained in a range of conditions, the EC of building needs to be calculated based on probabilistic analysis. This study identifies and analyzes the statistical characteristics of EC emitted from building construction materials. It was aimed at buildings constructed of reinforced concrete and nine representative construction materials. Descriptive statistics analysis, correlation analysis, and a goodness-of-fit test were performed to describe the statistical characteristics of EC. In addition, a case study was carried out to show the difference between the deterministic and probabilistic estimations. Presenting statistical information on EC data and the differences between the deterministic and probabilistic values, the result shows the necessity and reasonability of the probabilistic method for EC estimation. (C) 2015 Published by Elsevier B.V.
Keywords
Construction; Construction Materials; Greenhouse Gases; Probability Theory; Goodness-of-fit Tests; Quantitative Research; Building Materials; Correlation; Descriptive Statistics; Embodied Carbon; Goodness-of-fit; Buildings (structures); Reinforced Concrete; Statistical Analysis; Embodied Carbon Emission; Greenhouse Effect; Carbon Dioxide; Life Cycle Carbon; Operational Carbon; Oc; Probabilistic Analysis; Building Construction Materials; Statistics Analysis; Correlation Analysis; Probabilistic Estimations; Statistical Information; Ec Data; Probabilistic Method; Ec Estimation; Life-cycle; Energy Measurement; System Boundary
Kim, Sang-chul; Kim, Yong-woo; Park, Kun Soo; Yoo, Choong-yuel. (2015). Impact of Measuring Operational-Level Planning Reliability on Management-Level Project Performance. Journal Of Management In Engineering, 31(5).
View Publication
Abstract
The earned value management system (EVMS) and the last planner system (LPS) have been widely used as effective performance measurement tools for construction managers and production units at construction projects. While the EVMS measures project-level costs and scheduling performances, the LPS measures the percent plan complete (PPC), which indicates the level of planning reliability. This paper investigates the relationship between planning reliability at the operational level and project performance at the management level (i.e., the success or failure of a project). Analyzing the empirical data of 23 residential projects of a large construction company, the authors find that, while the production plan in the weekly schedule is correlated rigidly with the daily plan in successful projects, such a rigid correlation is not observed in unsuccessful projects. To understand this finding, the authors further conducted interviews with project stakeholders. Taken together, this study suggests that an emphasis on LPS indices causes subcontractors to engage in myopic behaviors such as modifying operational-level indices. Consequently, management-level production plan rigidity is at risk. The findings in this paper offer valuable insights and help project stakeholders understand the attributes of operational-level and management-level indices and their relationships. (C) 2014 American Society of Civil Engineers.
Keywords
Construction Industry; Costing; Production Planning; Project Management; Reliability; Scheduling; Subcontracting; Construction Projects; Production Units; Myopic Behaviors; Project Stakeholders; Subcontractors; Production Plan; Percent Plan Completion; Scheduling Performances; Project-level Costs; Performance Measurement Tools; Construction Managers; Last Planner System; Earned Value Management System; Management-level Project Performance; Evms; Operational-level Planning Reliability; Balanced Scorecard; Lean Construction; Contractors; Indexes; Design; Model; Earned Value; Lean; Construction; Schedule Performance Index; Cost Performance Index; Percent-plan-completion; Empirical Analysis
Azari, Rahman; Kim, Yong-Woo. (2016). Integration Evaluation Framework for Integrated Design Teams of Green Buildings: Development and Validation. Journal Of Management In Engineering, 32(3).
View Publication
Abstract
Integrated design (ID) process encourages integration of team members in the design phase of green building projects through intense collaborative processes and free exchange of information. Although integration in general and ID in particular have been well theorized by construction management research community, there exists no systematic mechanism in the field to help owners, architects, and managers of green project teams assess the level of integration in their projects' ID team environment in a practical manner. The key objective of the present article is therefore to use a qualitative-quantitative methodology to propose and validate an integration evaluation framework for green project teams and to statistically test the association between integration level and project success. The framework can be used by green project teams for comparison, benchmarking, or educational purposes and for integration evaluation and improvement in ID team environments. This research also provides empirical evidence to anecdotes suggesting positive link between team integration and project success in green projects.
Keywords
Architecture; Benchmark Testing; Buildings (structures); Construction Industry; Education; Information Management; Process Design; Project Management; Statistical Testing; Team Working; Integration Evaluation Framework; Integrated Design Process; Team Members; Green Building Project; Construction Management Research Community; Architect; Id Team Environment; Benchmarking; Educational Purpose; Information Exchange; Construction; Delivery; Evaluation; Integration; Integrated Design; Green Buildings; Validation; Context; Input; Process; And Product (cipp)