Skip to content

The Consuming Mob: Bargain Shopping in the City

Iarocci, Louisa. (2019). The Consuming Mob: Bargain Shopping in the City. Architectural Theory Review, 23(2), 195 – 213.

View Publication

Abstract

This paper examines the representation of the crowd as the consuming mob in the American department store in the early twentieth century. In store promotions and popular accounts, urban retail spaces provide the setting for the materialization of the crowd as the driving engine and mutated body of mass consumption. Store owners and their backers employed the image of shopping hordes on their premises as an advertisement for the success of modern trade. The department store served as a model of a rational utopian order in its operations and spaces. But in popular representations the growing assemblies of bodies and goods often appeared as a potentially unruly force that threatened the constraints of their surroundings. This paper will trace the path of the urban crowd as it flowed from the city streets into the inner recesses of the store, mapping narratives of shopping through the lenses of gender and class.

Keywords

Crowds; Department Stores; Shopping; City; Consumption

A Performance-based Optimization Approach For Diffusive Surface Topology Design

Shtrepi, Louena; Echenagucia, Tomás Méndez; Badino, Elena; Astolfi, Arianna. (2021). A Performance-based Optimization Approach For Diffusive Surface Topology Design. Building Acoustics, 28(3), 231 – 247.

View Publication

Abstract

Different numerical techniques have been used in the last decades for the acoustic characterization and performance optimization of sound diffusive surfaces. However, these methods require very long calculation times and do not provide a rapid feedback. As a result, these methods can hardly be applied by designers at early stages of the design process, when successive design iterations are necessary from an aesthetic point of view. A suitable alternative could be the use of parametric modeling in combination with performance investigations during the design process of sound diffusive surfaces. To this aim, this study presents a design process for diffusive surfaces topology optimization based on the combination of parametric models and geometrical acoustic simulations. It aims to provide architects and designers with rapid visual feedback on acoustic performances at a preliminary stage of the design process. The method has been tested on different case studies, which have been modelled based on geometric guidelines for diffusive surface optimization. The sensitivity of the method showed that it could be a very useful tool for comparisons among surface design alternatives. Finally, the advantages and limitations of the integrated optimization in comparison with conventional optimizations are discussed.

Keywords

Acoustic Performance; Room Acoustics; Scattering; Coefficients; Accuracy; Field; Simulations; Diffusion; Surface Optimization; Performance-based Design

Measuring Circadian Lighting through High Dynamic Range Photography

Jung, B.; Inanici, M. (2019). Measuring Circadian Lighting through High Dynamic Range Photography. Lighting Research & Technology, 51(5), 742 – 763.

View Publication

Abstract

The human ocular system functions in a dual manner. While the most well-known function is to facilitate vision, a growing body of research demonstrates its role in resetting the internal body clock to synchronize with the 24-hour daily cycle. Most research on circadian rhythms is performed in controlled laboratory environments. Little is known about the variability of circadian light within the built and natural environments. Currently, very few specialized devices measure the circadian light, and they are not accessible to many researchers and practitioners. In this paper, tristimulus colour calibration procedures for high dynamic range photography are developed to measure circadian lighting. Camera colour accuracy is evaluated through CIE trichromatic (XYZ) measurements; and the results demonstrate a strong linear relationship between the camera recordings and a scientific-grade colorimeter. Therefore, it is possible to correct for the colour aberrations and use high dynamic range photographs to measure both photopic and circadian lighting values. Spectrophotometric measurements are collected to validate the methodology. Results demonstrate that measurements from high dynamic range photographs can correspond to the physical quantity of circadian luminance with reasonable precision and repeatability. Circadian data collected in built environments can be utilized to study the impact of design decisions on human circadian entrainment and to create guidelines and metrics for designing circadian friendly environments.

Keywords

Physical Constants; Medical Photography; Photography; Built Environment; Morningness-eveningness Questionnaire; Statistical Reliability; Circadian Rhythms; Action Spectrum; Ganglion-cells; Bright Light; Exposure; Sensitivity; Framework; Daylight; Daytime; Model; Rod

Protecting Neighbourhood Character While Allowing Growth? Pike/Pine Conservation Overlay District, Seattle, Washington. Planning Perspectives

Kuriyama, Naoko; Ochsner, Jeffrey Karl. (2021). Protecting Neighbourhood Character While Allowing Growth? Pike/Pine Conservation Overlay District, Seattle, Washington. Planning Perspectives, 36(6), 1195 – 1223.

View Publication

Abstract

The City of Seattle created the Pike/Pine Conservation Overlay District in 2009 to preserve the character of the Pike/Pine Corridor (neighbourhood) while simultaneously accommodating substantial growth in the number of residents and the size of buildings. Pike/Pine is known for its adaptively reused collection of early twentieth century 'Auto Row' buildings and for the diversity of its population. Since the year 2000, proximity to downtown has made this area attractive for development, and the city has designated Pike/Pine as a growth centre in its comprehensive plan. The city's implementation of the Pike/Pine Conservation Overlay District (one of the first uses of a conservation district in a commercial/mixed-use neighbourhood in the United States) seeks to address the conflict inherent in accommodating growth while simultaneously trying to protect older architecture, small-scale local businesses, and a diverse mix of housing. This article analyses the elements and impacts of this unusual district, considering its application of facade retention for townscape conservation as well as analysing its broad approach within the framework of integrated conservation. This article argues that the Pike/Pine Conservation Overlay District offers a useful case study for other cities looking to support growth while also retaining elements of the past. [ABSTRACT FROM AUTHOR]; Copyright of Planning Perspectives is the property of Routledge and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Keywords

Pine; Neighborhoods; Urban Growth; Twentieth Century; Transportation Corridors; Seattle (wash.); Conservation District; Design Review; Facadism; Historic Preservation; Integrated Conservation; Overlay District; Pike/pine Corridor; Seattle; Washington

Glareshade: A Visual Comfort-Based Approach to Occupant-Centric Shading Systems

Hashemloo, Alireza; Inanici, Mehlika; Meek, Christopher. (2016). Glareshade: A Visual Comfort-Based Approach to Occupant-Centric Shading Systems. Journal Of Building Performance Simulation, 9(4), 351 – 365.

View Publication

Abstract

This paper presents a novel method for designing of an occupant-centric shading algorithm that utilizes visual comfort metric as the form-generating criteria. Based on the premise of previous studies that demonstrate glare as the most important factor for operating shading devices, GlareShade is introduced as a simulation-based shading methodology driven by occupant's visual comfort. GlareShade not only responds to changing outdoor conditions such as the movement of the sun and the variation of cloud cover, but it also accounts for building specific local conditions. GlareShade draws its strength and flexibility from an occupant-centric approach that is based on the visual field of view of each occupant as the occupant is performing common visual tasks in a given environment, and the developed shading system is linked to a distributed sensing network of multiple occupants. ShadeFan is demonstrated as a proof-of-concept dynamic shading system utilizing the GlareShade method.

Keywords

Control Strategies; Design Tool; Daylight; Patterns; Offices; Blinds; Model; Occupant-centric Shading System; Glare; Daylighting; Visual Comfort

Environmental Benefits of Using Hybrid CLT Structure in Midrise Non-Residential Construction: An LCA Based Comparative Case Study in the U.S. Pacific Northwest

Pierobon, Francesca; Huang, Monica; Simonen, Kathrina; Ganguly, Indroneil. (2019). Environmental Benefits of Using Hybrid CLT Structure in Midrise Non-Residential Construction: An LCA Based Comparative Case Study in the U.S. Pacific Northwest. Journal Of Building Engineering, 26.

View Publication

Abstract

In this study, the cradle-to-gate environmental impact of a hybrid, mid-rise, cross-laminated timber (CLT) commercial building is evaluated and compared to that of a reinforced concrete building with similar functional characteristics. This study evaluates the embodied emissions and energy associated with building materials, manufacturing, and construction. Two alternative designs are considered for fire protection in the hybrid CLT building: 1) a 'fireproofing design', where gypsum wallboard is applied to the structural wood; and 2) a 'charring design', where two extra layers of CLT are added to the panel. The life cycle environmental impacts are assessed using TRACI 2.1 and the total primary energy is evaluated using the Cumulative Energy Demand impact method. Results show that an average of 26.5% reduction in the global warming potential is achieved in the hybrid CLT building compared to the concrete building, excluding biogenic carbon emissions. Except ozone depletion, where the difference in impact between scenarios is < 1%, replacing fireproofing with charring is beneficial for all impact categories. The embodied energy assessment of the building types reveals that, on average, the total primary energy in the hybrid CLT buildings and concrete building are similar. However, the non-renewable energy (fossil-based) use in the hybrid CLT building is 8% lower compared to that of the concrete building. As compared to the concrete building, additional 1,556 tCO(2)(e) and 2,567 tCO(2e) are stored in the wood components of the building (long-term storage of biogenic carbon) in the scenario with fireproofing and with charring, respectively.

Keywords

Wood; Concrete; Energy; Buildings; Impacts; Cross-laminated Timber; U.s. Pacific Northwest; Life Cycle Assessment; Cumulative Energy Demand; Biogenic Carbon; Carbon Storage

A Three-Dimensional Approach to the Extended Limit Analysis of Reinforced Masonry

Roca, Pere; Liew, Andrew; Block, Philippe; Lopez, David Lopez; Echenagucia, Tomás Méndez; Van Mele, Tom. (2022). A Three-Dimensional Approach to the Extended Limit Analysis of Reinforced Masonry. Structures, 35, 1062 – 1077.

View Publication

Abstract

The Extended Limit Analysis of Reinforced Masonry (ELARM) is a simple and user-friendly method for the design and structural analysis of singly-curved, reinforced tile vaults [1]. It is based on limit analysis but takes into account the reinforcement's contribution to the composite cross-section's bending capacity.& nbsp;A three-dimensional approach to ELARM is presented in this paper. The theoretical framework to understand the implications and limitations of extending ELARM to fully 3D structures is described, together with the strategies to carry out the leap from 2D to 3D. This extension is a lower-bound approach for the design of reinforced masonry, reinforced concrete and concrete-masonry composite shells and the assessment of their strength and stability against external loading.& nbsp;The new, extended method is implemented computationally to speed up the iterative processes, provide quick structural feedback, offer immediate results and allow for user-interactive form-finding and optimisation procedures. Different applications of the developed tool are described through the presentation of examples, including reinforcement optimisation, a form-finding process and a case with a shape beyond funicular geometry.

Keywords

Tile Vault; Masonry; Reinforced Brick; Formwork; Concrete Shells; Limit Analysis; Thrust Network Analysis; Extended Limit Analysis Of Reinforced Masonry; Tile Vaults