Skip to content

Beauty, Versatility, Practicality: The Rise of Hyperbolic Paraboloids in Post-War America (1950-1962)

Sprague, Tyler S. (2013). Beauty, Versatility, Practicality: The Rise of Hyperbolic Paraboloids in Post-War America (1950-1962). Construction History-international Journal Of The Construction History Society, 28(1), 165 – 184.

Abstract

The hyperbolic paraboloid was relatively unknown in the United States prior to 1950 but, by 1962, it had gained widespread recognition and acceptance among practising and academic architects, structural engineers and builders. Aligning with the architectural trends and structural capabilities of the post-war era, hyperbolic paraboloids were used to construct everything from churches to warehouses and residences to gas stations. They could be constructed in many different ways and built with different materials including reinforced concrete, plywood and aluminium. The hyperbolic paraboloid became synonymous with innovation and experimentation in construction technology. This paper reviews the people and buildings that influenced the rise in popularity of the hyperbolic paraboloid forms, traces different construction practices used to build them in the post-war Americas, and tracks their emergence as a built form that characterised the American post-war era.

Keywords

Hyperbolic Paraboloid; Construction Innovation; Aluminium; Plywood; Concrete Construction; Formwork; Usa; 1950s

Deep Learning in Design Workflows: The Elusive Design Pixel

Mahankali, Ranjeeth; Johnson, Brian R.; Anderson, Alex T. (2018). Deep Learning in Design Workflows: The Elusive Design Pixel. International Journal Of Architectural Computing, 16(4), 328 – 340.

View Publication

Abstract

The recent wave of developments and research in the field of deep learning and artificial intelligence is causing the border between the intuitive and deterministic domains to be redrawn, especially in computer vision and natural language processing. As designers frequently invoke vision and language in the context of design, this article takes a step back to ask if deep learning's capabilities might be applied to design workflows, especially in architecture. In addition to addressing this general question, the article discusses one of several prototypes, BIMToVec, developed to examine the use of deep learning in design. It employs techniques like those used in natural language processing to interpret building information models. The article also proposes a homogeneous data format, provisionally called a design pixel, which can store design information as spatial-semantic maps. This would make designers' intuitive thoughts more accessible to deep learning algorithms while also allowing designers to communicate abstractly with design software.

Keywords

Associative Logic; Creative Processes; Deep Learning; Embedding Vectors; Bimtovec; Homogeneous Design Data Format; Design Pixel; Idea Persistence

Mechanical, Electrical, Plumbing and Tenant Improvements over the Building Lifetime: Estimating Material Quantities and Embodied Carbon for Climate Change Mitigation

Rodriguez, Barbara X.; Huang, Monica; Lee, Hyun Woo; Simonen, Kathrina; Ditto, Jim. (2020). Mechanical, Electrical, Plumbing and Tenant Improvements over the Building Lifetime: Estimating Material Quantities and Embodied Carbon for Climate Change Mitigation. Energy And Buildings, 226.

View Publication

Abstract

The building industry is expanding its ability to mitigate the environmental impacts of buildings through the application of life cycle assessment (LCA). Most building LCA studies focus on core and shell (C&S) and rarely assess mechanical, electrical, and plumbing (MEP) and tenant improvements (TI). However, C&S typologies in the commercial sector pose particular challenges to achieving net zero carbon due to the numerous renovations these building undergo through during their service life. MEP and TI are installed multiple times over the lifetime of commercial buildings leading to cumulative environmental impact caused by increasing material quantities and embodied carbon (EC). This study aimed to establish a preliminary range of material quantities and embodied carbon impacts for MEP and TI components, focusing on commercial office buildings in the Pacific Northwest. The first research stage involved quantifying material quantities while a second stage aimed to calculate Embodied Carbon Coefficients (ECC) and LCA impacts using different data sources. The embodied carbon estimates ranged from 40 to 75 kg CO(2)e/m(2) for MEP and 45-135 kg CO(2)e/m(2) for TI. However, with recurring instalments during a life span of 60 years the impacts become comparable to known impacts of core and shell systems. (C) 2020 Elsevier B.V. All rights reserved.

Keywords

Embodied Carbon; Life Cycle Assessment; Tenant Improvement; Mechanical; Electrical And Plumbing

Evaluating Direct Energy Savings and Market Transformation Effects: A Decade of Technical Design Assistance in the Northwestern USA

Van Den Wymelenberg, Kevin; Brown, G. Z.; Burpee, Heather; Djunaedy, Ery; Gladics, Gunnar; Kline, Jeff; Loveland, Joel; Meek, Christopher; Thimmanna, Harshana. (2013). Evaluating Direct Energy Savings and Market Transformation Effects: A Decade of Technical Design Assistance in the Northwestern USA. Energy Policy, 52, 342 – 353.

View Publication

Abstract

This paper documents the direct energy savings and energy efficiency market transformation impacts of a multi-state design assistance program in the northwestern US. The paper addresses four specific aims. (1) It provides a conservative and justified estimate of the direct energy savings associated with design assistance activities of a market transformation program from 2001 to 2010. (2) It provides a rigorous methodology to evaluate direct energy savings associated with design assistance market transformation programs. (3) It provides a low-cost replicable method to predict energy savings in new buildings by evaluating the integrated design process. (4) It provides quantitative indicators useful for estimating indirect energy savings from market transformation. Applying the recommended analysis method and assuming a 12-year measure life, the direct energy savings of the population (626 buildings; 51,262,000 ft(2)) is estimated as 453 aMW (average megawatts) (electric), and 265,738.089 therms (non-electric). If the entire program budget were divided into the electric savings only, the Lab Network cost per kWh saved ranged from $0.0016 to $0.003 using the recommended method and $0.0092/kWh using the most conservative method. These figures do not isolate contextual influences or represent total resource cost. Statistically significant correlations (r(2)=0.1-0.3) between integrated design scores and energy savings are reported. (C) 2012 Elsevier Ltd. All rights reserved.

Keywords

Programs; Sweden; Energy Efficiency; Market Transformation; Evaluation

Syncing with the Sky: Daylight-Driven Circadian Lighting Design

Altenberg Vaz, Nathan; Inanici, Mehlika. (2021). Syncing with the Sky: Daylight-Driven Circadian Lighting Design. Leukos, 17(3), 291 – 309.

View Publication

Abstract

The use of daylight in the built environment is often preferred to artificial light sources as its successful application can provide visual comfort and satisfaction along with the potential for significant energy savings. Exposure to daylight is also the primary source for stimulus that establishes a healthy day/night cycle in all living organisms. This is known as circadian rhythm. Newly discovered photoreceptors (intrinsically photosensitive retinal ganglion cells - ipRGC) within the mammalian eye, including humans, are specifically linked to the portion of the brain responsible for maintaining a healthy circadian rhythm. This discovery has led to a new subject area in the field of lighting design focused on controlling the spectrum of light that these photoreceptors are sensitive to. Currently, work in the field of circadian lighting design is concentrated on the use of artificial light sources for circadian stimulus. This is largely due to the advent of the widespread use of LED technology, which has proven that it can be a significant source of light that can delay or advance the circadian clock. The use of daylight to provide circadian stimulus has been a given in this field of design, however, there has not been very much research into how the built environment affects our ability to effectively receive this stimulus from daylight. In this research, the groundwork is established to start to create a set of guidelines to help architects and designers maximize the potential for daylight to provide circadian stimulus at the earliest stages of a project. This is accomplished through a series of lighting simulations that explore and test various architectural parameters that affect daylight-driven circadian lighting, with simultaneous consideration given to photopic lighting availability and visual comfort. The architectural parameters tested in this study included window head height, building orientation, shading devices, visual obstructions to the sky, and room depth. The results show that informed design decisions could maximize circadian potential in a given space, while achieving visually satisfactory luminous environments.

Keywords

Action Spectrum; Melanopsin; Environments; Sensitivity; Framework; Stimulus; Rod; Circadian Lighting; Daylight; Lighting Simulation; Alfa

Comparative Analysis of Hospital Energy Use: Pacific Northwest and Scandinavia

Burpee, Heather; McDade, Erin. (2014). Comparative Analysis of Hospital Energy Use: Pacific Northwest and Scandinavia. Health Environments Research & Design Journal (HERD) (Vendome Group LLC), 8(1), 20 – 44.

View Publication

Abstract

OBJECTIVE: This study aimed to establish the potential for significant energy reduction in hospitals in the United States by providing evidence of Scandinavian operational precedents with high Interior Environmental Quality (IEQ) and substantially lower energy profiles than comparable U.S. facilities. These facilities set important precedents for design teams seeking operational examples for achieving aggressive energy and interior environmental quality goals. This examination of operational hospitals is intended to offer hospital owners, designers, and building managers a strong case and concrete framework for strategies to achieve exceptionally high performing buildings. BACKGROUND: Energy efficient hospitals have the potential to significantly impact the U.S.'s overall energy profile, and key stakeholders in the hospital industry need specific, operationally grounded precedents in order to successfully implement informed energy reduction strategies. This study is an outgrowth of previous research evaluating high quality, low energy hospitals that serve as examples for new high performance hospital design, construction, and operation. Through extensive interviews, numerous site visits, the development of case studies, and data collection, this team has established thorough qualitative and quantitative analyses of several contemporary hospitals in Scandinavia and the Pacific Northwest. Many Scandinavian hospitals demonstrate a low energy profile, and when analyzed in comparison with U.S. hospitals, such Scandinavian precedents help define the framework required to make significant changes in the U.S. hospital building industry. METHODS: Eight hospitals, four Scandinavian and four Pacific Northwest, were quantitatively compared using the Environmental Protection Agency's Portfolio Manager, allowing researchers to answer specific questions about the impact of energy source and architectural and mechanical strategies on energy efficiency in operational hospitals. RESULTS: Specific architectural, mechanical, and plant systems make these Scandinavian hospitals more energy efficient than their Pacific Northwest counterparts. More importantly, synergistic systems integration allows for their significant reductions in energy consumption. CONCLUSIONS: This quantitative comparison of operational Scandinavian and Pacific Northwest hospitals resulted in compelling evidence of the potential for deep energy savings in the U.S., and allowed researchers to outline specific strategies for achieving such reductions.

Keywords

Environmental Quality; Energy Consumption; Health Facility Design & Construction; Comparative Studies; Energy Consumption In Hospitals; Pacific Northwest; Scandinavia; Built Environment; Case Study; Design Process; Healthcare Facility Design; Hospital; Post Occupancy

Embodied Carbon as a Proxy for the Environmental Impact of Earthquake Damage Repair

Simonen, K.; Huang, M.; Aicher, C.; Morris, P. (2018). Embodied Carbon as a Proxy for the Environmental Impact of Earthquake Damage Repair. Energy And Buildings, 164, 131 – 139.

View Publication

Abstract

In evaluating the life cycle environmental impacts of buildings, the contributions of seismic damage are rarely considered. In order to enable a more comprehensive assessment of a building's environmental impact by accounting for seismic events, this project developed an environmental impact database of building component seismic damage - the largest of its kind known to date - by combining data from Carnegie Mellon University's Economic Input-Output Life Cycle Analysis (LCA) database with cost estimates of repair previously developed for FEMA's Performance Assessment Calculation Tool (PACT), a software that models probabilistic seismic damage in buildings. Fifteen indicators of environmental impacts were calculated for the repair of approximately 800 building components for up to five levels of seismic damage, capturing 'embodied' impacts related to cradle-to-gate manufacturing of building materials, products, and equipment. Analysis of the data revealed that non-structural and architectural finishes often dominated the environmental impacts of seismic damage per dollar spent in repair. A statistical analysis was performed on the data using Principal Component Analysis, confirming that embodied carbon, a popular metric for evaluating environmental impacts in building LCAs, is a suitable proxy for other relevant environmental impact metrics when assessing the impact of repairing earthquake damage of buildings. (C) 2018 Elsevier B.V. All rights reserved.

Keywords

Life-cycle Assessment; Input-output; Buildings; Life Cycle Assessment; Seismic Analysis; Performance-based Design; Economic Input-output; Principal Component Analysis; Energy And Climate Change; Architectural Engineering; Carbon; Carbon Cycle; Earthquake Damage; Earthquakes; Environmental Impact; Environmental Management; Databases; Finishes; Environmental Assessment; Building Components; Construction Materials; Life Cycle Engineering; Life Cycle Analysis; Data Bases; Damage Assessment; Aseismic Buildings; Statistical Analysis; Equipment Costs; Cost Estimates; Data Processing; Data Analysis; Seismic Activity; Cost Analysis; Principal Components Analysis; Performance Assessment; Life Cycles; Repair; Impact Damage; Building Materials; Economic Analysis; Software

Architecture During Wartime: The Mostra d’Oltremare and Esposizione Universale di Roma

McLaren, Brian L. (2014). Architecture During Wartime: The Mostra d’Oltremare and Esposizione Universale di Roma. Architectural Theory Review, 19(3), 299 – 318.

View Publication

Abstract

This paper examines the architecture and planning of the Mostra d'Oltremare in Naplesa national display of colonial expansion that opened in May 1940and the Esposizione Universale di Romaan Olympics of Civilization that was proposed for 1942. These two major exhibitions will be studied in relation to Italy's violent and racially motivated Imperial politics. In the first case, it will closely examine the Villaggi indigeni (Indigenous village) of Italian East Africa, a scientific re-enactment of native constructions that became a space of violence and political confinement. In the second, it will study the Villaggio operaio (Workers' village), which, just like the larger exhibition grounds, was transformed into a site of military conflict during the war period.