Skip to content

2021 Carbon Leadership Forum Material Baseline Report (version 2)

Carlisle, S., Waldman, B., Lewis, M., and Simonen, K. (2021).  2021 Carbon Leadership Forum Material Baseline Report, (version 2). Carbon Leadership Forum, University of Washington. Seattle, WA. July 2021. University of Washington ResearchWorks Archive.

View Publication

Abstract

The building industry has an essential role to play in tackling climate change associated with building construction and materials manufacturing. Our present understanding of the importance of embodied carbon has been enabled by rigorous quantitative modeling that tracks carbon emissions across the full life of materials and products, using life cycle assessment (LCA). In recent years, the building industry has adopted LCA as the globally accepted method for evaluating and communicating environmental impacts, and applied these methods to the study of materials, products, and assemblies. LCA data and results are essential for guiding science-based efforts to decarbonize buildings and infrastructure.

The Carbon Leadership Forum is part of a broad movement working to drive down the embodied carbon of building materials and products by encouraging the disclosure of high-quality embodied carbon data by manufacturers. It is essential that designers, owners, and policymakers have access to verified, third-party reviewed and published data on building materials and products in order to facilitate procurement decisions, set decarbonization targets, and inform design. One tool for achieving this goal has been the collection and use of Environmental Product Declarations (EPDs) to inform decision-making.

The development of a material baseline originated in support of the Embodied Carbon in Construction Calculator (EC3). The EC3 Baseline was originally published in 2019. This document supersedes the baseline dated May 2020. The EC3 tool and its open-access database of digital EPDs are one source for accessing and evaluating available EPDs and the relative carbon impacts that they report. Such databases support designers, owners, and policymakers in selecting low-carbon products during procurement and design. These databases are dynamic, updated constantly as new products are added and upstream data on key processes, such as carbon intensity of regional electricity grids, are revised.

Transformative Carbon-Storing Materials: Accelerating an Ecosystem Report

Kriegh, J., Magwood, C., Srubar, W., Lewis, M., Simonen, K. (2021).  Transformative Carbon-Storing Materials: Accelerating an Ecosystem Report.  https://hdl.handle.net/1773/48126

View Publication

Abstract

The potential for meaningful climate impact through materials that serve as carbon sinks now gives such materials a clear advantage, with the potential to reverse the climate profile of buildings from a leading driver of carbon emissions to carbon reservoirs that can help reverse it.

Embodied Carbon Toolkit for Building Owners

Lewis, M., Huang, M., Simonen, K. (2021), “Embodied Carbon Toolkit for Building Owners”. Carbon Leadership Forum. 

View Publication

Abstract

Investors, developers, and public or private building owners and tenants are essential to reducing embodied carbon because they play an important role in spurring new projects and setting project requirements. Prioritizing carbon early in a project reduces cost and increases the range of strategies available, while signaling markets about the importance of low-carbon materials.

AIA-CLF Embodied Carbon Toolkit for Architects

Lewis, M., Huang, M., Carlisle, S. Simonen, K. (2021), AIA-CLF Embodied Carbon Toolkit for Architects, Carbon Leadership Forum and AIA National. 

View Publication

Abstract

The AIA-CLF Embodied Carbon Toolkit for Architects serves to provide architects an overview and the necessary steps to be taken to reduce embodied carbon in their projects. This resource is divided into three parts, introducing the necessary steps and resources to take in reducing embodied carbon. This resource intends to empower building designers by:
-introducing embodied carbon and discussing its significance in furthering architects’ influence in decarbonizing the building industry.
-providing an understanding of measuring embodied carbon through the methodology of a life cycle assessment.
-equipping them with strategies to reduce embodied carbon in their own projects.
-incorporating additional resources for implemented strategies and tools that this resource examines.

Buy Clean California Limits: A Proposed Methodology for Setting Industry-Average GWP Limits for Steel, Mineral Wool, and Flat Glass

Carlisle, S., Waldman, B., DeRousseau, M., Miller, L., Ciavola, B., Lewis, M., and Simonen, K. (2022). Buy Clean California Limits: A Proposed Methodology for Setting Industry-Average GWP Limits for Steel, Mineral Wool, and Flat Glass. Carbon Leadership Forum, University of Washington. Seattle, WA. https://hdl.handle.net/1773/48600

View Publication

Abstract

The Buy Clean California Act requires the California Department of General Services (DGS), in consultation with the California Air Resources Board, to establish maximum acceptable global warming potential (GWP) limits at industry-average for structural steel (hot-rolled sections, hollow structural sections, and plate), concrete reinforcing steel, flat glass, and mineral wool board insulation (heavy and light). DGS is directed to set these limits at the industry average using data from facility-specific environmental product declarations (EPDs) or industry-wide EPDs based on domestic production data.

In order for GWP limits to be effective they must be scientifically derived, transparent in their underlying methodology, and clear in scope and definition. Calculating industry-average values using EPDs, as required by the BCCA, is challenging: the quality and quantity of data available for calculating GWP limits varies by product type and is continually growing.

Developing an Embodied Carbon Policy Reduction Calculator

Benke, B., Lewis, M., Carlisle, S., Huang, M., and Simonen, K. (2022). Developing an Embodied Carbon Policy Reduction Calculator. Carbon Leadership Forum, University of Washington. Seattle, WA.  https://hdl.handle.net/1773/48566

View Publication

Abstract

A growing number of cities are committed to tackling the urgent challenge of their built environment carbon footprint through their policies and programs. 110 cities took the Cities Race to Zero Clean Construction pledges to reduce embodied emissions in their policies and programmes in 2021, and 40 leading cities are participating in the C40 Clean Construction programme and mayors are setting the direction of travel by signing the Clean Construction Declaration, which requires collective action to halve embodied emissions by 2030.

However, embodied carbon is a new policy area for many cities and the lack of city-level data on embodied carbon is a significant barrier for policymakers to gain political support and make informed decisions. The goal of developing an embodied carbon policy reduction calculator is to address these challenges by:
-Modeling the potential embodied carbon reduction of a selected number of policies to give cities the values they need to make informed decisions;
-Allowing for comparison of emissions reduction policies for embodied carbon by key target dates (2030 and 2050) to assess the largest opportunities for impact;
-Evaluating which policies may be required to meet embodied carbon reduction targets, such as those set by city or regional climate action plans; and
-Ultimately enabling cities to make the case for and adopt policies to reduce embodied carbon.

Buy Clean Buy Fair Washington Project: Final Report

Huang, M., Lewis, M., Escarcega, P., Escarcega, E., Torres, M., Waterstrat, H., Kinder-Pyle, I., Simonen, K. (2022). Buy Clean Buy Fair Washington Project: Final Report. Carbon Leadership Forum and Washington State Department of Commerce.

View Publication

Abstract

The Buy Clean Buy Fair (BCBF) Washington Project was a pilot study commissioned by the Washington State Legislature in 2021. This project was funded by two budget provisos that required the University of Washington (UW) College of Built Environments’ Carbon Leadership Forum (CLF) to:
-Develop a reporting database to collect environmental and labor information from state construction projects. For this project, the database is a prototype, meant for testing and demonstration purposes only.
-Conduct a case study using pilot projects. Five projects were enlisted to test out and provide feedback on the data reporting process.

Pacific Coast Collaborative: Embodied Carbon Policy Case Studie

Kalsman, M., Lewis, M., Simonen, K. (2023). Pacific Coast Collaborative: Embodied Carbon Policy Case Studies. Carbon Leadership Forum, University of Washington. Seattle, WA. https://hdl.handle.net/1773/49771.

View Publication

Abstract

The PCC Low Carbon Construction Task Force, launched at COP26 in November 2021, is a regional initiative between California, Oregon, Washington, British Columbia, San Francisco, Seattle, Los Angeles, Oakland, Portland, and Vancouver to advance low-carbon materials and methods in building and construction projects. The Task Force aims to create a shared regional strategy with the goal of accelerating innovation, investment, and market development for low carbon materials by leveraging the scale of the Pacific Coast regional economy. The CLF began supporting the taskforce as a technical resource in 2022.

These case studies showcase the region’s policy leadership on low-carbon construction and provide insights to inform other jurisdictions pursuing legislation and other policies within the Pacific Coast region and beyond.

2023 Carbon Leadership Forum North American Material Baselines, Baseline Report

Waldman, B., Hyatt, A., Carlisle, S., Palmeri, J., and Simonen, K. (2023). 2023 Carbon Leadership Forum North American Material Baselines (version 2). Carbon Leadership Forum, University of Washington. Seattle, WA. August 2023. http://hdl.handle.net/1773/49965

View Publication

Abstract

The CLF Baseline values represent an estimate of industry-average GHG emissions for construction materials manufactured in North America. An overwhelming majority of the CLF Baselines published in this report are based on a North American industry-wide EPD if one was available at the time of publication. As such, it is appropriate to use this number as a rough estimate of a product type’s embodied carbon before a specific product has been selected or as a reference value against which product-level comparisons can be made.

Each material category has a detailed appendix that includes a description of the embodied carbon impacts, the available EPDs, and summary statistics. The Appendices in this report allow users to better understand the availability of existing industry-wide and product EPDs, and the variability of product types across a category. The snapshot of available EPDs summarized in each Appendix was assembled using the EC3 database in Fall 2022.

Advancing the LCA Ecosystem: A Policy-Focused Roadmap for Reducing Embodied Carbon

Lewis, M., Waldman, B., Carlisle, S., Benke, B., and Simonen, K. (2023). Advancing the LCA Ecosystem: A Policy-Focused Roadmap for Reducing Embodied Carbon. Carbon Leadership Forum, University of Washington. Seattle, WA.

View Publication

Abstract

Policy action on embodied carbon is growing quickly. 2021-2023 has seen an unprecedented number of introduced and passed policies targeting embodied carbon reductions in the building and infrastructure sectors in the US, Canada, and internationally. Policies aimed at reducing the embodied carbon of building and infrastructure projects and construction materials typically leverage life cycle assessment (LCA) as a methodology to measure the impacts of a product or project and compare them against a percentage reduction target or embodied carbon performance standard (i.e., global warming potential (GWP) limit).

The effectiveness of policies in reducing embodied carbon relies on the health of the underlying LCA ecosystem – the standards, guidelines, data sources, tools, and actors/organizations that constitute the interdependent building blocks of LCA – to create consistent, reliable estimates of embodied carbon to report and benchmark products and projects.