Skip to content

Socioeconomic Impact Assessment Of Highly Dense-Urban Construction Projects

Ibrahim, Amir; El-Anwar, Omar; Marzouk, Mohamed. (2018). Socioeconomic Impact Assessment of Highly Dense-Urban Construction Projects. Automation In Construction, 92, 230 – 241.

View Publication

Abstract

Dense-urban construction is reported to affect the social and economic welfare of surrounding residents and local businesses in various ways. However, research studies and practical methodologies aimed at assessing to what extent the choice of a construction plan that reduces such effect are very limited. The objective of this paper is to present the development of an automated assessment methodology to fill this research gap. To this end, two formulations are presented; one based on multi-attributed utility functions and the other based on monetary compensations for disruptions caused by construction operations. Both formulations assess the impacts of construction plans on (1) increased travel distance; (2) residents' relocation; (3) business loss; (4) business closure; and (5) noise inconvenience. The proposed automated methodology is implemented in five sequential phases and utilizes Geographical Information Systems (GIS) and Visual Basic Application (VBA). Using the proposed implementation, the two alternative formulations are applied to an infrastructure upgrading project in Cairo, Egypt that had five possible construction scenarios. While the two formulations resulted in the same preference order for the five scenarios, they exhibited different performance in terms of their (1) assessment relative values; (2) required input data and robustness; (3) ease of results interpretation; and (4) comprehensiveness and scalability. The developed framework shows promising results in terms of identifying and sorting the major root causes of the socioeconomic disruptions caused by dense urban construction. Results show that using the proposed methodology informs decision-making and planning at the early stages of a project, which in turn helps to reduce cost overruns and schedule delays.

Keywords

Construction Projects; Socioeconomics; Social Services; Construction Project Management; Building Design & Construction; Geographic Information Systems; Infrastructure (economics); Dense-urban Construction; Gis; Socioeconomic Assessment; Decision Making; Economics; Plant Shutdowns; Tourism Industry; Automated Assessment; Construction Operations; Construction Plan; Socio-economic Assessments; Socio-economic Impact Assessment; Urban Construction; Utility Functions; Visual Basic Application; Pavement Construction; Road; Sustainability; Behavior; Industry; Highway; Models; Choice

Curriculum To Prepare AEC Students for BIM-Enabled Globally Distributed Projects

Anderson, Anne; Dossick, Carrie Sturts; Osburn, Laura. (2020). Curriculum To Prepare AEC Students for BIM-Enabled Globally Distributed Projects. International Journal Of Construction Education & Research, 16(4), 270 – 289.

View Publication

Abstract

Globalization and the increasing adoption of BIM and other technologies in the AEC industry have changed the way we prepare graduates for the digital workplace. This paper presents curriculum design where students from five universities worked together to develop design and construction proposals. This paper describes a collaborative project executed in two parts. Part I included the University of Washington in the USA and IIT-Madras in India. Part II included Washington State University in the USA, and National Taiwan University and National Cheng Kung University in Taiwan. Students from these global universities worked on a multi-disciplinary, interdependent project where teams created 3D models and 4D construction simulations. This curriculum addresses ACCE and ABET accreditation requirements regarding multi-disciplinary teams, ethical and professional responsibilities in global, economic, environmental, and societal contexts, and effective teamwork. In this paper, we describe the course design, evaluative criteria, and lessons learned. We found that it was important to emphasize BIM Execution Planning for distributed teams given that communication and coordination can be challenging across time zones and cultural differences. Working through technical challenges of exchanging BIM data, the students learned coordination skills in a globally distributed team environment that simulated real work experiences. [ABSTRACT FROM AUTHOR]; Copyright of International Journal of Construction Education & Research is the property of Routledge and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Keywords

College Curriculum; Project Management; Digital Technology; Work Environment; Globalization; Bim; Building Information Modeling; Digital Literacy; Distributed Teams; Global Collaboration

Act(2): Time Cost Tradeoffs from Alternative Contracting Methods

Choi, Kunhee; Bae, Junseo; Yin, Yangtian; Lee, Hyun Woo. (2021). Act(2): Time Cost Tradeoffs from Alternative Contracting Methods. Journal Of Management In Engineering, 37(1).

View Publication

Abstract

Incentive/disincentive (I/D) and cost-plus-time (A+B) are two of the most widely used alternative contracting methods (ACMs) for accelerating the construction of highway infrastructure improvement projects. However, little is known about the effects of trade-offs in terms of project schedule and cost performance. This study addresses this problem by creating and testing a stochastic decision support model called accelerated alternative contracting cost-time trade-off (ACT(2)). This model was developed by a second-order polynomial regression analysis and validated by the predicted error sum of square statistic and paired comparison tests. The results of a descriptive trend analysis based on a rich set of high-confidence project data show that I/D is effective at reducing project duration but results in higher cost compared to pure A+B and conventional methods. This cost-time trade-off effect was confirmed by the ACT(2) model, which determines the level of cost-time trade-off for different ACMs. This study will help state transportation agencies promote more effective application of ACMs by providing data-driven performance benchmarking results when evaluating competing acceleration strategies and techniques. (C) 2020 American Society of Civil Engineers.

Keywords

Highway; Construction; Model; Alternative Contracting Methods; Cost-plus-time; A Plus B; Incentive; Infrastructure Trend; Time-cost Trade-off

Study of the Relationship between Procurement Duration and Project Performance in Design-Build Projects: Comparison between Water/Wastewater and Transportation Sectors

Bogus, Susan M.; Migliaccio, Giovanni C.; Jin, Ruoyu. (2013). Study of the Relationship between Procurement Duration and Project Performance in Design-Build Projects: Comparison between Water/Wastewater and Transportation Sectors. Journal Of Management In Engineering, 29(4), 382 – 391.

View Publication

Abstract

Previous studies on building, industrial, and transportation projects found that projects delivered using design-build tend to perform better than projects delivered with the traditional design-bid-build method. However, performance of design-build projects is affected by various factors, with procurement-related factors being among the most influential. Whereas other aspects of procurement have been largely investigated, the effect of procurement duration on project performance has been studied only for design-build transportation projects. In addition, few studies have focused specifically on the delivery of water/wastewater projects. This paper includes the results of a study on the relationship between procurement duration and performance of water/wastewater design-build projects. The study methodology was based on regression analysis of data from a sample of water/wastewater design-build projects. The results show that unlike the transportation sector, procurement duration has little effect on either schedule or cost performance in the water/wastewater sector. Likely reasons for this difference were then explored through a content analysis of procurement documents. (C) 2013 American Society of Civil Engineers.

Keywords

Design Engineering; Procurement; Project Management; Regression Analysis; Transportation; Waste Management; Procurement Documents; Schedule Performance; Cost Performance; Design-build Transportation Projects; Procurement-related Factors; Design-bid-build Method; Water-wastewater Sectors; Transportation Sectors; Project Performance; Procurement Duration; Design/build; Project Delivery; Water; Wastewater

Maximizing the Computational Efficiency of Temporary Housing Decision Support Following Disasters

El-Anwar, Omar; Chen, Lei. (2014). Maximizing the Computational Efficiency of Temporary Housing Decision Support Following Disasters. Journal Of Computing In Civil Engineering, 28(1), 113 – 123.

View Publication

Abstract

Postdisaster temporary housing has long been a challenging problem because of its interlinked socioeconomic, political, and financial dimensions. A significant need for automated decision support was obvious to address this problem. Previous research achieved considerable advancements in developing optimization models that can quantify and optimize the impacts of temporary housing decisions on the socioeconomic welfare of displaced families and total public expenditures on temporary housing as well as other objectives. However, the computational complexity of these models hindered its practical use and adoption by emergency planners. This article analyzes the computational efficiency of the current implementation of the most advanced socioeconomic formulation of the temporary housing problem, which uses integer programming. Moreover, it presents the development of a customized variant of the Hungarian algorithm that has a superior computational performance while maintaining the highest quality of solutions. An application example is presented to demonstrate the unique capabilities of the new algorithm in solving large-scale problems.

Keywords

Decision Support Systems; Emergency Management; Integer Programming; Computational Efficiency; Temporary Housing Decision Support Following Disasters; Financial Dimensions; Political Dimensions; Socioeconomic Dimensions; Socioeconomic Welfare; Emergency Planners; Socioeconomic Formulation; Hungarian Algorithm; Multiobjective Optimization; Maeviz-hazturk; Housing; Computation; Disasters; Temporary Structures; Temporary Housing; Optimization; Disaster Management

Empirical Comparison of Methods for Estimating Location Cost Adjustments Factors

Migliaccio, G. C.; Zandbergen, Paul; Martinez, A. A. (2015). Empirical Comparison of Methods for Estimating Location Cost Adjustments Factors. Journal Of Management In Engineering, 31(2).

View Publication

Abstract

Location factors are used to adjust conceptual cost estimates by project location. Presently, the construction industry has adopted a simple, proximity-based interpolation method to estimate location factors for missing locations. Although this approach is widely accepted, its validity has not been statistically substantiated. This study assessed the current method of adjusting conceptual cost estimates by project location and compared its performance against two alternative spatial interpolation methods. A Moran's I test was used to confirm the presence of strong spatial autocorrelation, which supports the use of proximity-based methods. Additional statistical evaluations of current and alternative methods were also conducted. Results provided statistical justification for the current method. However, an alternative method was proven to outperform the current method. Moreover, several opportunities for future research were identified as a result of this exploratory study. (C) 2014 American Society of Civil Engineers.

Keywords

Construction Industry; Interpolation; Statistical Analysis; Location Cost Adjustment Factor; Proximity-based Interpolation Method; Project Location; Spatial Interpolation Method; Moran I Test; Spatial Autocorrelation; Statistical Evaluation; Geographical Information-systems; Construction; Layout; Gis; Conceptual Estimating; Geographic Information Systems; Construction Costs; Planning; Location Adjustments

Physiological Cost Of Concrete Construction Activities

Lee, Wonil; Migliaccio, Giovanni Ciro. (2016). Physiological Cost Of Concrete Construction Activities. Construction Innovation, 16(3), 281 – 306.

View Publication

Abstract

Purpose - The purpose of this paper was to investigate the physiological cost of concrete construction activities. Design/methodology/approach - Five concrete construction workers were recruited. The workers' three-week heart rate (HR) data were collected in summer and autumn. In this paper, several HR indexes were used to investigate the physiological cost of work in concrete construction trades, including average working HR, relative HR and ratio of working HR to resting HR. Findings - This paper measures how absolute and relative HRs vary throughout a workday and how working HR compares to resting HR for individual workers. Research limitations/implications - Field observations are usually extremely difficult as researchers need to overcome a number of barriers, including employers' resistance to perceived additional liabilities, employees' fear that their level of activity will be reported to managers and many other practical and technical difficulties. As these challenges increase exponentially with the number of employers, subjects and sites, this study was limited to a small number of subjects all working for the same employer on the same jobsite. Still, challenges are often unpredictable and lessons learned from this study are expected to guide both our and other researchers' continuation of this work. Originality/value - The time effect on the physiological cost of work has not been considered in previous studies. Thus, this study is noteworthy owing to the depth of the data collected rather than the breadth of the data.

Keywords

Concrete; Construction Industry; Costing; Human Resource Management; Occupational Health; Personnel; Physiology; Physiological Cost; Concrete Construction Activity; Construction Workers; Summer; Autumn; Construction Trade; Working Heart Rate; Relative Heart Rate; Resting Heart Rate; Employee Fear; Jobsite; Heart-rate Strain; Stress; Work; Risk; Management; Fusion; Model; Index; Biosensing And Environmental Sensing; Occupational Safety And Health; Threshold Limit Value; Work Physiology

Model for Collecting Replacement Cycles of Building Components: Hybrid Approach of Indirect and Direct Estimations

Kim, Jonghyeob; Lee, Hyun Woo; Bender, William; Hyun, Chang-taek. (2018). Model for Collecting Replacement Cycles of Building Components: Hybrid Approach of Indirect and Direct Estimations. Journal Of Computing In Civil Engineering, 32(6).

View Publication

Abstract

Building maintenance, repair, and replacement (MR&R) costs are estimated to be two to three times larger than initial construction costs. Thus, it is important to accurately estimate and manage MR&R costs in the planning phase and/or design phase of a construction project based on life cycle cost analysis (LCCA). However, the nature of LCCA requires making necessary assumptions for the prediction and analysis of MR&R costs, and the reliability of the assumptions greatly impacts LCCA results. In particular, determining reasonable replacement cycles is especially important given that each replacement typically involves a significant amount of capital. However, conventional approaches largely focus on either collecting component-specific replacement cases or surveying expert opinions, both of which reduce the usability and reliability of replacement cycle data at an early stage. To overcome these limitations, this study aims to develop a replacement cycle collection model that can expedite the data collection by combining indirect estimations with direct estimations. The development of the model involves collecting replacement cases, developing replacement cycle and index estimation methods, and developing an algorithm to implement the suggested model. As a validation, the applicability and effectiveness of the model were illustrated and tested by using simulated cases based on 21 real-world facilities. This study makes a theoretical contribution to the body of knowledge by developing a replacement cycle data collection model based on long-term and macro perspectives. The developed model will also be of value to practitioners when they try to improve the reliability of their LCCA.

Keywords

Buildings (structures); Life Cycle Costing; Maintenance Engineering; Structural Engineering; Building Components; Building Maintenance; Planning Phase; Design Phase; Construction Project; Life Cycle Cost Analysis; Replacement Cycle Data Collection Model; Construction Costs; Lcca; Maintenance Repair And Replacement Cost; Service Life Prediction; Repair; Replacement; Replacement Cycles; Replacement Index; Database; Indirect Estimations

Analyzing Investments in Flood Protection Structures: A Real Options Approach

Gomez-Cunya, Luis-Angel; Fardhosseini, Mohammad Sadra; Lee, Hyun Woo; Choi, Kunhee. (2020). Analyzing Investments in Flood Protection Structures: A Real Options Approach. International Journal Of Disaster Risk Reduction, 43.

View Publication

Abstract

The soaring number of natural hazards in recent years due largely to climate change has resulted in an even higher level of investment in flood protection structures. However, such investments tend to be made in the aftermath of disasters. Very little is known about the proactive planning of flood protection investments that account for uncertainties associated with flooding events. Understanding the uncertainties such as when to invest on these structures to achieve the most optimal cost-saving amount is outmost important. This study fills this large knowledge gap by developing an investment decision-making assessment framework that determines an optimal timing of flood protection investment options. It combines real options with a net present value analysis to examine managerial flexibility in various investment timing options. Historical data that contain information about river water discharges were leveraged as a random variable in the modeling framework because it may help investors better understand the probability of extreme events, and particularly, flooding uncertainties. A lattice model was then used to investigate potential alternatives of investment timing and to evaluate the benefits of delaying investments in each case. The efficacy of the proposed framework was demonstrated by an illustrative example of flood protection investment. The framework will be used to help better inform decision makers.

Keywords

Decision-making; Flood Protection; Real Options Theory; Investment Decision-making

Three Pathways to Highly Energy Efficient Buildings: Assessing Combinations of Teaming and Technology

Homayouni, Hoda; Dossick, Carrie Sturts; Neff, Gina. (2021). Three Pathways to Highly Energy Efficient Buildings: Assessing Combinations of Teaming and Technology. Journal Of Management In Engineering, 37(2).

View Publication

Abstract

Highly energy efficient (HEE) buildings require a whole-system approach to building design. Scholars have suggested many tools, techniques, and processes to address the cross-disciplinary complexities of such an approach, but how these elements might be best combined to lead to better project outcomes is yet unknown. To address this, we surveyed architects associated with 33 AIA-COTE award-winning projects on the social, organizational, and technological elements of whole-system design (WSD) practices. We then used fuzzy sets-qualitative comparative analysis (fsQCA) to analyze the interdependencies among those elements. We found three distinct pathways for the design and construction of HEE buildings: information-driven, process-driven, or organization-driven. We also found that HEE buildings share some conditions for success, including having shared goals, owners engagement in the design process, and frequent and participatory interorganizational meetings. Our findings can help practitioners strategize and make decisions on incorporating WSD elements associated with their project types. Moreover, these results provide a launchpad for scholars to investigate complementarities among elements facilitating the design and construction process of HEE projects.

Keywords

Buildings (structures); Construction; Design Engineering; Energy Conservation; Fuzzy Set Theory; Innovation Management; Organisational Aspects; Project Management; Team Working; Whole-system Approach; Building Design; Cross-disciplinary Complexities; Social Elements; Organizational Elements; Technological Elements; Whole-system Design Practices; Fuzzy Set; Distinct Pathways; Hee Buildings; Project Types; Construction Process; Hee Projects; Highly Energy Efficient Buildings; Whole-system Design; Energy Efficient Buildings; Building Information Modeling; Integrated Project Teams; Fuzzy Sets-qualitative Comparative Analysis