Choi, Kunhee; Lee, Hyun Woo; Mao, Zhuting; Lavy, Sarel; Ryoo, Boong Yeol. (2016). Environmental, Economic, and Social Implications of Highway Concrete Rehabilitation Alternatives. Journal Of Construction Engineering And Management, 142(2).
View Publication
Abstract
Currently, there is no comprehensive benchmark of life-cycle assessment for the rigid pavement alternatives for highway rehabilitation. To fill this gap, the major objective of this study is to investigate the environmental, economic, and social impacts of the three most widely adopted rigid pavement choices through a life-cycle assessment approach with custom-built economic input-output life-cycle assessment (EIO-LCA) models. Quantity takeoffs were performed for each alternative assuming a 1-lane-km highway rehabilitation. Subsequently, the construction costs of each alternative were computed in order to determine the present values for a life span of 50years, while at the same time accounting for a different life expectancy for each pavement rehabilitation strategy. The present values were then incorporated into a corresponding EIO-LCA model. The results clearly indicate that continuously reinforced concrete pavement (CRCP) is the most sustainable choice and much preferable to the other alternatives for minimizing negative environmental, economic and social impacts from the life-cycle perspective. This finding champions a wider adoption of CRCP for future sustainable transportation infrastructure development projects, as CRCP's relatively high initial construction cost can be recouped by long-term sustained benefits. The results and findings of this study can serve as a solid foundation for industry practitioners and decision-makers to make better-informed project decisions when choosing the most sustainable pavement alternatives from a life-cycle perspective. (C) 2015 American Society of Civil Engineers.
Keywords
Construction Industry; Environmental Management; Life Cycle Costing; Product Life Cycle Management; Project Management; Reinforced Concrete; Road Building; Socio-economic Effects; Sustainable Development; Economic Implications; Environmental Implications; Industry Practitioners; Sustainable Transportation Infrastructure Development Projects; Continuously Reinforced Concrete Pavement; Crcp; Eio-lca Model; Life Span; Construction Costs; Custom-built Economic Input-output Life-cycle Assessment Models; Rigid Pavement Alternatives; Highway Concrete Rehabilitation Alternatives; Life-cycle Assessment Approach; Social Implications; Life-cycle Assessment; Pavement; Asphalt; Pavement Rehabilitation; Environmental Assessment; Economic Factors; Land Use
Park, Hyoungbae; Kim, Kyeongseok; Kim, Yong-woo; Kim, Hyoungkwan. (2017). Stakeholder Management in Long-Term Complex Megaconstruction Projects: The Saemangeum Project. Journal Of Management In Engineering, 33(4).
View Publication
Abstract
This paper identifies 31 critical success factors (CSFs) and suggests a framework for effective stakeholder management in long-term complex megaconstruction (LCM) projects that require more than 10 years for multipurpose development. The results of a survey on the prioritization of these 31 CSFs reveal that LCM projects involve more stakeholders than do general construction projects and require a correspondingly wider range of changes during each project. To identify more systematic and strategic approaches to stakeholder management in LCM projects, a framework was developed through factor analysis and focus-group interviews with project management experts. The framework is composed of the following five agendas: clear understanding of stakeholders, clear definition of the project, effective communication, responding to environmental changes, and social cooperation. The analysis results show that LCM projects require a stronger emphasis on responding to environmental changes and social cooperation. These results, along with the CSF priorities, reveal the necessity of taking customized approaches to LCM projects. The results of this analysis are expected to help LCM project managers effectively manage stakeholders. (C) 2017 American Society of Civil Engineers.
Keywords
Construction; Environmental Management; Project Management; Strategic Planning; Social Cooperation; Environmental Changes; Strategic Approaches; Construction Projects; Saemangeum Project; Long-term Complex Megaconstruction Projects; Stakeholder Management; Critical Success Factors (csfs); Long-term Complex Megaconstruction (lcm) Projects
Taylor, John E.; Alin, Pauli; Anderson, Anne; Çomu, Semra; Dossick, Carrie Sturts; Hartmann, Timo; Iorio, Josh; Mahalingam, Ashwin; Mohammadi, Neda. (2018). Cybergrid: A Virtual Workspace for Architecture, Engineering, and Construction. Transforming Engineering Education: Innovative, Computer-mediated Learning Technologies, 291-321.
View Publication
Abstract
Projects in the architecture, engineering and construction (AEC) industry frequently involve a large number of firms that increasingly span national boundaries. National boundary spanning by AEC firms engaged in complex, interdependent work introduces coordination challenges because stakeholders may not share the same language, culture or work practices. These types of firms have begun to explore the use of technologies that can meaningfully create productive work connections between the distributed participants 47 and help improve work coordination and execution. In this chapter, we describe the CyberGRID (Cyber-enabled Global Research Infrastructure for Design); a virtual workspace designed to support geographically distributed AEC work coordination and execution. The CyberGRID was created as a research tool to both enable and study virtual AEC teamwork. We summarize findings from multiple experiments over the jive year history of CyberGRID research and development. These findings help to improve our understanding of interactional dynamics among virtual teams in complex sociotechnical systems like the CyberGRID. We then discuss the challenges faced in developing the CyberGRID and in achieving widespread adoption of such tools in the industry. We close the chapter with a discussion of future research opportunities to develop improved sociotechnical systems to better support the execution of AEC projects. Our goal with this chapter is to argue that sociotechnical systems like the CyberGRID can fundamentally and positively transform the interactional dynamics of AEC project stakeholders to create more efficient global virtual work practices.
Keywords
Civil Engineering Computing; Construction Industry; Data Visualisation; Groupware; Project Management; Team Working; Virtual Reality; Cybergrid; Virtual Workspace; Construction; Engineering; National Boundaries; National Boundary Spanning; Aec Firms; Complex Work; Interdependent Work; Coordination Challenges; Culture; Productive Work Connections; Chapter; Global Research Infrastructure; Geographically Distributed Aec Work Coordination; Research Tool; Virtual Aec Teamwork; Virtual Teams; Complex Sociotechnical Systems; Future Research Opportunities; Improved Sociotechnical Systems; Aec Projects; Aec Project Stakeholders; Efficient Global Virtual Work Practices
Nnaji, Chukwuma; Karakhan, Ali A.; Gambatese, John; Lee, Hyun Woo. (2020). Case Study to Evaluate Work-Zone Safety Technologies in Highway Construction. Practice Periodical On Structural Design And Construction, 25(3).
View Publication
Abstract
The construction industry is known for its conservative approach toward adopting new, emerging technologies. This conservative approach for adopting technology is caused by multiple factors including the lack of adequate resources to guide construction practitioners in the process of evaluating whether a construction firm should adopt a certain technology or not. Previous studies have already proposed rigorous protocols for evaluating work-zone technologies, but the implementation of such protocols is still unclear to many construction practitioners. The objective of this study is to provide a case study example of how evaluation protocols can be used in practice to determine whether a firm should adopt a certain work-zone technology. The case study focused on assessing the usefulness of commercially available work-zone intrusion alert technologies (WZIATs). The results of the evaluation revealed that some WZIATs could be more attractive to construction organizations and agencies in terms of providing louder alarms, being more mobile, and allowing a higher transmission range. The case study example discussed in this study is expected to provide invaluable practical information to practitioners in the construction industry interested in evaluating and adopting emerging technologies.
Keywords
Construction Industry; Mobile Radio; Occupational Safety; Road Building; Road Safety; Highway Construction; Conservative Approach; Construction Practitioners; Construction Firm; Rigorous Protocols; Work-zone Technology; Case Study Example; Evaluation Protocols; Commercially Available Work-zone Intrusion Alert Technologies; Construction Organizations; Evaluate Work-zone Safety Technologies; Speed; Signs; Work Zone; Safety Technology; Intrusion Alert; Evaluation Protocol
Recart, Carolina; Dossick, Carrie Sturts. (2022). Hygrothermal Behavior Of Post-retrofit Housing: A Review Of The Impacts Of The Energy Efficiency Upgrade Strategies. Energy & Buildings, 262.
View Publication
Abstract
Improving energy efficiency of existing buildings is currently among the most diverse and extensive mitigation opportunities to reduce energy consumption and CO2 emissions worldwide. However, the implementation of energy-saving measures has caused unintended impacts, often correlated with dampness and mold growth connected to poor hygrothermal behavior in residential buildings. The focus of this paper is research on the impacts of energy efficiency measures (EEMs) in regard to the hygrothermal behavior resulting from the interaction of building's envelope, indoor environment, and occupants. The results show that dampness and mold growth are by no means exclusive to neglected houses, since the occurrence of these pathologies actually depends upon a complex set of conditions, including indoor and outdoor conditions, occupancy, maintenance, ventilation, mechanical systems, and quality of the envelope. We found that building envelope post-retrofit may suffer from higher levels of moisture and dampness, higher condensations risks, and a faster structural degradation caused by higher humidity levels. We also found that measuring hygrothermal behavior may play a role in more accurately predicting both overall energy consumption and occupant comfort. While hygrothermal behavior may be problematic, we found evidence that retrofits may moderately improve thermal comfort. (c) 2022 Elsevier B.V. All rights reserved.
Keywords
Energy Consumption; Energy Consumption Of Buildings; Carbon Emissions; Geothermal Ecology; Housing; Thermal Comfort; Building Envelopes; Dampness And Mold; Energy Retrofits; Hygrothermal Behavior; Residential Buildings; Unintended Impacts; Indoor Air-quality; Low-income; Environmental-quality; Assistance-program; Building Envelope; Health; Ventilation; Weatherization; Performance; Mold Growths; Indoor Environments; Moisture Effects; Energy Efficiency; Residential Areas; Mechanical Systems; Moisture Content; Green Buildings; Energy Conservation; Carbon Dioxide; Mold; Emission Measurements; Emissions; Mitigation; Buildings; Occupancy; Retrofitting; Mechanical Properties
Launching the Inspire Fund: An early step for CBE’s Office of Research “For a small college, CBE has a broad range of research paradigms, from history and arts, to social science and engineering.” — Carrie Sturts Dossick, Associate Dean of Research Upon taking on the role of Associate Dean of Research, Carrie Sturts Dossick, professor in the Department of Construction Management, undertook listening sessions to learn about the research needs of faculty, staff and students across the College of Built…
In 2021 the College of Built Environments launched the CBE Inspire Fund, designed to support CBE research activities for which a relatively small amount of support can be transformative. The second year of awards have just been announced, supporting five projects across 4 departments within the college as they address topics such as food sovereignty, anti-displacement, affordable housing, and health & wellbeing. This year’s awardees include: Defining the New Diaspora: Where Seattle’s Black Church Congregants Are Moving and Why Rachel…
Assistant Professor, Department of Construction Management
Fred is an Assistant Professor with the Department of Construction Management (CM) at the University of Washington (UW). Prior to joining UW in September 2021, he was an Assistant Professor at Texas State University in San Marcos, TX where he taught and performed research in the areas of concrete materials, durability, and sustainable infrastructure construction. He received his PhD in Civil Engineering from the University of Texas at Austin in 2016.
Dr. Aguayo is interested in research application that contribute to facilitating the implementation of sustainable and novel cement-based systems in infrastructure and building applications such as alternative cement binders, supplementary cementing materials (SCMs), recycled aggregates, and high performing concretes. His research group focuses on evaluating and characterizing deterioration processes in new and existing cementitious materials, while also developing test methods to predict and enhance their performance and durability in the field. He primarily examines durability-related issues in cement-based materials such as corrosion, carbonation, ASR, sulfate attack, and early-age volume changes.
Dr. Aguayo is a well-established researcher with over 13 years of experience and over $1.2M in funded research projects as either PI or Co-PI since 2016. His work has been supported by both private industry and public agencies including LarfargeHolcim, Texas DOT, Minnesota DOT, New Mexico DOT, National Research Road Alliance (NRRA), and the Portland Cement Association (PCA). He is an active member of the American Concrete Institute and ASTM International, and participates in several committees related to concrete durability (ACI 201) and material science of cementitious systems (ACI 236).
Previous studies on construction hazard prevention have shown that almost 50% of construction fatalities and accidents can be linked to decisions made during the design process. To address the influence of upstream design decisions on worker safety, researchers have developed the Prevention through Design (PtD) concept to proactively eliminate safety hazards in the workplace. In response, CBE researchers, Hyun Woo “Chris” Lee, PD Koon Endowed Associate Professor in Construction Management and Dr. Laura Osburn, Senior Research Scientist in Construction Management,…
Julie Kriegh, researcher with the Carbon Leadership Forum and other CBE research centers, and owner of Kriegh Architecture Studios, collaborated with other CBE faculty and external partners to lead a UW CBE studio course in collaboration with Google that developed and delivered a design proposal for a sustainable data center. CBE collaborators included Hyun Woo “Chris” Lee, P.D. Koon Professorship in Construction Management; Jan Whittington, Associate Professor of the Department of Urban Design and Planning, and Director of the Urban…