Zhang, Zhenyu; Lin, Ken-yu; Lin, Jia-hua. (2021). Factors Affecting Material-Cart Handling in the Roofing Industry: Evidence for Administrative Controls. International Journal Of Environmental Research And Public Health, 18(4).
View Publication
Abstract
Material-cart handling can be strenuous and lead to overexertion injuries. The aim of this study is to produce a thorough understanding of how the cart condition, tire type, physical environment-related factors, and load interact to influence the ergonomics and productivity of cart handling. Eighteen roofing carts with different conditions, tires, and loads were tested by one subject on three laboratory tracks: one L-shaped, one with ramps within constrained spaces, and one with obstacles within constrained spaces. A multiple linear regression analysis was performed to quantify the main and interaction effects of the factors of interest on the cart operations. The research findings confirm that using aged carts increases the injury risk by as much as 30.5% and decreases productivity by 35.4%. Our study also highlights the necessity of keeping an open space for cart operation; the travel distance from a cart to a ramp/obstacle should be greater than 61 cm. Finally, the results suggest the at-risk thresholds for different ramp slopes and obstacle heights, and the safe load capacities for the various working circumstances that are common on construction sites. The evidence created in this study can be translated into administrative controls for cart handling to reduce overexertion injuries and enhance performance.
Keywords
Overexertion In Pulling And Pushing; Material Cart Handling; Roof Construction; Ergonomic Risk Factors; Administrative Control
El-Anwar, Omar; El-Rayes, Khaled; Elnashai, Amr S. (2010). Maximizing the Sustainability of Integrated Housing Recovery Efforts. Journal Of Construction Engineering And Management, 136(7), 794 – 802.
View Publication
Abstract
The large-scale and catastrophic impacts of Hurricanes Katrina and Rita in 2005 challenged the efficacy of traditional postdisaster temporary housing methods. To address these challenges, the U.S. Congress appropriated $400 million to the Department of Homeland Security to support alternative housing pilot programs, which encourage innovative housing solutions that will facilitate sustainable and permanent affordable housing in addition to serving as temporary housing. Facilitating and maximizing the sustainability of postdisaster alternative housing is an important objective that has significant social, economic, and environmental impacts. This paper presents the development of a novel optimization model that is capable of (1) evaluating the sustainability of integrated housing recovery efforts under the alternative housing pilot program and (2) identifying the housing projects that maximize sustainability. An application example is analyzed to demonstrate the use of the developed model and its unique capabilities in maximizing the sustainability of integrated housing recovery efforts after natural disasters.
Keywords
Northridge Earthquake; United-states; Disasters; Optimization; Postdisaster Alternative Housing; Sustainability; Housing Recovery
El-Anwar, Omar; Chen, Lei. (2013). Computing a Displacement Distance Equivalent to Optimize Plans for Postdisaster Temporary Housing Projects. Journal Of Construction Engineering And Management, 139(2), 174 – 184.
View Publication
Abstract
Residence in temporary housing is a critical period for the social, economic, and psychological recovery of displaced families following disasters. Temporary housing locations define the displacement distance between families and their essential needs. The objective of this paper is to develop a novel methodology to capture the specific proximity needs and preferences of displaced families. This paper proposes a displacement distance equivalent as an objective metric to evaluate the performance of temporary housing locations in meeting the needs of displaced families. Moreover, the paper describes the development of an integer programming optimization model capable of optimizing temporary housing assignments to minimize total displacement distance equivalent while meeting budget constraints. The main contribution of this paper to the body of knowledge is in transforming the purpose of temporary housing programs from offering general accommodation to providing customized housing solutions tailored to the individual proximity needs of each household using the proposed displacement metric. In addition, the proposed optimization model enables decision makers to set budget constraints to ensure the economic feasibility of identified temporary housing solutions. DOI: 10.1061/(ASCE)CO. 1943-7862.0000601. (C) 2013 American Society of Civil Engineers.
Keywords
Disasters; Emergency Management; Integer Programming; Social Sciences; Displaced Families; Customized Housing Solutions; Decision Makers; Displacement Metric; Budget Constraints; Integer Programming Optimization Model; Objective Metric; Temporary Housing Locations; Post-disaster Temporary Housing Projects; Displacement Distance Equivalent Computation; Multiobjective Optimization; Optimization; Temporary Housing; Disaster Recovery; Displacement Distance; Housing Sites
Kim, Sang-Chul; Kim, Yong-Woo. (2014). Computerized Integrated Project Management System for a Material Pull Strategy. Journal Of Civil Engineering And Management, 20(6), 849 – 863.
View Publication
Abstract
The purpose of this paper is to present a computerized integrated project management system and report results of a survey on the effectiveness of the system. The system consists of a scheduling system, material management system, labor/equipment system, and safety/quality control system. The backbone system is a scheduling system that adopts a production planning system and a project scheduling system. The lowest level in the scheduling system is a daily work management system, which is linked to each functional management system (i.e. material management system, labor/equipment system, and safety/quality control system). The paper focuses on the material management and scheduling systems to implement a material pull system to reduce material inventories on site. Details of material management and scheduling systems are discussed, and a sample application is presented to demonstrate the features of the proposed computer application system. The paper presents practitioners and researchers with a practical tool to integrate material management and scheduling systems for site personnel.
Keywords
Construction; Lean Construction; Material Management System; Integrated System; Daily Work Management
Choi, Kunhee; Lee, Hyun Woo. (2016). Deconstructing the Construction Industry: A Spatiotemporal Clustering Approach to Profitability Modeling. Journal Of Construction Engineering And Management, 142(10).
View Publication
Abstract
In spite of the strong influence of the construction industry on the national health of the United States' economy, very little research has specifically aimed at evaluating the key performance parameters and trends (KPPT) of the industry. Due to this knowledge gap, concerns have been constantly raised over lack of accurate measures of KPPT. To circumvent these challenges, this study investigates and models the macroeconomic KPPT of the industry through spatiotemporal clustering modeling. This study specifically aims to analyze the industry in 14 of its subsectors and subsequently, by 51 geographic spatial areas at a 15-year temporal scale. KPPT and their interdependence were firstly examined by utilizing the interpolated comprehensive U.S. economic census data. A hierarchical spatiotemporal clustering analysis was then performed to create predictive models that can reliably determine firm's profitability as a function of the key parameters. Lastly, the robustness of the predictive models was tested by a cross-validation technique called the predicted error sum of square. This study yields a notable conclusion that three key performance parameterslabor productivity, gross margin, and labor wageshave steadily improved over the study period from 1992 to 2007. This study also reveals that labor productivity is the most critical factor; the states and subsectors with the highest productivity are the most profitable. This study should be of value to decision-makers when plotting a roadmap for future growth and rendering a strategic business decisions.
Keywords
Construction Industry; Decision Making; Knowledge Management; Labour Resources; Macroeconomics; Organisational Aspects; Productivity; Profitability; Salaries; Statistical Analysis; Strategic Planning; Hierarchical Spatiotemporal Clustering Approach; National Health; Macroeconomic Kppt; Knowledge Gap; Spatiotemporal Clustering Modeling; Interpolated Comprehensive U.s. Economic Census Data; Parameters-labor Productivity; Gross Margin; Labor Wages; Strategic Business Decisions; Deconstructing; Key Performance Parameters And Trends; Firms Profitability; Error Sum Of Square; Labor Productivity; Projects; Firms; Performance; Performance Measurement; Cluster Analysis; Economic Census; Project Planning And Design
Lee, Wonil; Seto, Edmund; Lin, Ken-yu; Migliaccio, Giovanni C. (2017). An Evaluation Of Wearable Sensors And Their Placements For Analyzing Construction Worker’s Trunk Posture In Laboratory Conditions. Applied Ergonomics, 65, 424 – 436.
View Publication
Abstract
This study investigates the effect of sensor placement on the analysis of trunk posture for construction activities using two off-the-shelf systems. Experiments were performed using a single-parameter monitoring wearable sensor (SPMWS), the ActiGraph GT9X Link, which was worn at six locations on the body, and a multi-parameter monitoring wearable sensor (MPMWS), the Zephyr BioHarnessTM3, which was worn at two body positions. One healthy male was recruited and conducted 10 experiment sessions to repeat measurements of trunk posture within our study. Measurements of upper-body thoracic bending posture during the lifting and lowering of raised deck materials in a laboratory setting were compared against video-captured observations of posture. The measurements from the two sensors were found to be in agreement during slow-motion symmetric bending activities with a target bending of <= 45. However, for asymmetric bending tasks, when the SPMWS was placed on the chest, its readings were substantially different from those of the MPMWS worn on the chest or under the armpit. (C) 2017 Elsevier Ltd. All rights reserved.
Keywords
Detectors; Construction Workers; Posture; Wearable Technology; Accelerometers; Work-related Injuries; Health; Accelerometer For Inclinometry; Construction Worker; Work-related Musculoskeletal Disorder; Motion Measurement; Position Measurement; Sensor Placement; Upper-body Thoracic Bending Posture Measurements; Trunk Posture Measurements; Zephyr Bioharness 3; Sensor Placement Effect; Construction Worker Trunk Posture Analysis; Wearable Sensor Evaluation; Asymmetric Bending Tasks; Slow-motion Symmetric Bending Activities; Mpmws; Multiparameter Monitoring Wearable Sensor; Actigraph Gt9x Link; Spmws; Single-parameter Monitoring Wearable Sensor; Low-back-pain; Physical-activity Assessment; Risk-factors; Musculoskeletal Disorders; Reliability; Movements; Validity; System; Gt3x+accelerometer
Nnaji, Chukwuma; Lee, Hyun Woo; Karakhan, Ali; Gambatese, John. (2018). Developing a Decision-Making Framework to Select Safety Technologies for Highway Construction. Journal Of Construction Engineering And Management, 144(4).
View Publication
Abstract
Highway construction has consistently reported relatively high fatality rates largely because of the considerable exposure of workers to live traffic. To address this anomaly, traffic control planners are tasked with making decisions geared toward reducing hazardous situations caused by transiting vehicles and construction equipment. The growing application of technologies to enhance worker safety should be considered during the traffic control planning process. In certain cases, decisions such as choosing among technology options are made using experiential individual knowledge without the application of scientific and systematic decision-making methods. Use of experience-based decision making in this context is largely the result of sparse literature on scientific methods of selecting between alternatives in highway construction work zones. By applying the Choosing by Advantages (CBA) decision-making method, a process that achieves sound and effective decisions, the current study aims to fill the gap in practice by proposing a decision-making framework that could enhance the value-cost selection process of safety technologies in highway construction work zones. A situation that applied work zone intrusion alert technologies (WZIATs) was selected as a case study. Using a focus group session and case projects as an evaluation study process, the proposed framework based on the CBA decision-making process was applied to evaluate three WZIATs. Findings from the current study will benefit safety professionals and practitioners by providing a step-by-step approach to make sound decisions that can enhance the level of safety in highway construction work zones.
Keywords
Construction Equipment; Decision Making; Occupational Safety; Project Management; Road Building; Effective Decisions; Decision-making Framework; Value-cost Selection Process; Highway Construction Work Zones; Work Zone Intrusion Alert Technologies; Cba Decision-making Process; Sound Decisions; Traffic Control Planners; Worker Safety; Traffic Control Planning Process; Technology Options; Scientific Decision-making Methods; Systematic Decision-making Methods; Experience-based Decision Making; Advantages Decision-making Method; Safety Technologies; Knowledge; Signs
Lee, Yong-Cheol; Shariatfar, Moeid; Rashidi, Abbas; Lee, Hyun Woo. (2020). Evidence-Driven Sound Detection for Prenotification and Identification Of Construction Safety Hazards and Accidents. Automation In Construction, 113.
View Publication
Abstract
As the construction industry experiences a high rate of casualties and significant economic loss associated with accidents, safety has always been a primary concern. In response, several studies have attempted to develop new approaches and state-of-the-art technology for conducting autonomous safety surveillance of construction work zones such as vision-based monitoring. The current and proposed methods including human inspection, however, are limited to consistent and real-time monitoring and rapid event recognition of construction safety issues. In addition, the health and safety risks inherent in construction projects make it challenging for construction workers to be aware of possible safety risks and hazards according to daily planned work activities. To address the urgent demand of the industry to improve worker safety, this study involves the development of an audio-based event detection system to provide daily safety issues to laborers and through the rapid identification of construction accidents. As an evidence-driven approach, the proposed framework incorporates the occupational injury and illness manual data, consisting of historical construction accident data classified by types of sources and events, into an audio-based safety event detection framework. This evidence-driven framework integrated with a daily project schedule can automatically provide construction workers with prenotifications regarding safety hazards at a pertinent work zone as well as consistently contribute to enhanced construction safety monitoring by audio-based event detection. By using a machine learning algorithm, the framework can clearly categorize the narrowed-down sound training data according to a daily project schedule and dynamically restrict sound classification types in advance. The proposed framework is expected to contribute to an emerging knowledge base for integrating an automated safety surveillance system into occupational accident data, significantly improving the accuracy of audio-based event detection.
Keywords
Construction Projects; Occupational Hazards; Construction Workers; Construction; System Safety; Video Surveillance; Work-related Injuries; Audio-based Accident Recognition; Autonomous Safety Surveillance; Construction Safety; Evidence-driven Sound Event Detection; Accident Prevention; Accidents; Audio Acoustics; Classification (of Information); Construction Industry; Health Hazards; Health Risks; Knowledge Based Systems; Learning Algorithms; Losses; Machine Learning; Monitoring; Motion Compensation; Occupational Diseases; Steel Beams And Girders; Audio-based; Construction Accidents; Construction Work Zones; Historical Construction; Sound Event Detection; State-of-the-art Technology; Vision Based Monitoring; Algorithm; System
Zhang, Zhenyu; Lin, Ken-yu; Lin, Jia-hua. (2022). 2safe: A Health Belief Model-integrated Framework For Participatory Ergonomics. Theoretical Issues In Ergonomics Science, 1 – 18.
View Publication
Abstract
Abstract Initiating ergonomics interventions in a business environment requires changes in the behaviour of relevant actors. When participating in an intervention, researchers need to collect and share information with practitioners to help them make better behaviour-related decisions. This paper describes the five-step 2SAFE (Surveillance, Screening, Assessment, Framing, and Evaluation) planning framework, which can be used to guide research-practice collaboration in participatory ergonomics programmes. This framework combines the understanding of work-related musculoskeletal disorders with the principles of the health belief model. This theoretical synthesis empowers the framework to address the following critical challenges: (1) how to make data collection processes attuned to the nature of ergonomic injuries; and (2) how to transform the data collected into immediately usable information for practitioners to change their behaviours. The framework is interdisciplinary and can facilitate transfer of knowledge between ergonomics and health behaviour science. The framework can enhance the ability of researchers to collaborate with practitioners and bring participatory ergonomics programmes closer to success. In the long term, we hope that this framework can lead to more high-quality interventions that are able to prevent work-related musculoskeletal disorders in various industrial settings. [ABSTRACT FROM AUTHOR]; Copyright of Theoretical Issues in Ergonomics Science is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Keywords
Health Belief Model; Intervention Programme; Participatory Ergonomics; Planning Framework; Work-related Musculoskeletal Disorders
Launching the Inspire Fund: An early step for CBE’s Office of Research “For a small college, CBE has a broad range of research paradigms, from history and arts, to social science and engineering.” — Carrie Sturts Dossick, Associate Dean of Research Upon taking on the role of Associate Dean of Research, Carrie Sturts Dossick, professor in the Department of Construction Management, undertook listening sessions to learn about the research needs of faculty, staff and students across the College of Built…