Lee, Wonil; Seto, Edmund; Lin, Ken-yu; Migliaccio, Giovanni C. (2017). An Evaluation Of Wearable Sensors And Their Placements For Analyzing Construction Worker’s Trunk Posture In Laboratory Conditions. Applied Ergonomics, 65, 424 – 436.
View Publication
Abstract
This study investigates the effect of sensor placement on the analysis of trunk posture for construction activities using two off-the-shelf systems. Experiments were performed using a single-parameter monitoring wearable sensor (SPMWS), the ActiGraph GT9X Link, which was worn at six locations on the body, and a multi-parameter monitoring wearable sensor (MPMWS), the Zephyr BioHarnessTM3, which was worn at two body positions. One healthy male was recruited and conducted 10 experiment sessions to repeat measurements of trunk posture within our study. Measurements of upper-body thoracic bending posture during the lifting and lowering of raised deck materials in a laboratory setting were compared against video-captured observations of posture. The measurements from the two sensors were found to be in agreement during slow-motion symmetric bending activities with a target bending of <= 45. However, for asymmetric bending tasks, when the SPMWS was placed on the chest, its readings were substantially different from those of the MPMWS worn on the chest or under the armpit. (C) 2017 Elsevier Ltd. All rights reserved.
Keywords
Detectors; Construction Workers; Posture; Wearable Technology; Accelerometers; Work-related Injuries; Health; Accelerometer For Inclinometry; Construction Worker; Work-related Musculoskeletal Disorder; Motion Measurement; Position Measurement; Sensor Placement; Upper-body Thoracic Bending Posture Measurements; Trunk Posture Measurements; Zephyr Bioharness 3; Sensor Placement Effect; Construction Worker Trunk Posture Analysis; Wearable Sensor Evaluation; Asymmetric Bending Tasks; Slow-motion Symmetric Bending Activities; Mpmws; Multiparameter Monitoring Wearable Sensor; Actigraph Gt9x Link; Spmws; Single-parameter Monitoring Wearable Sensor; Low-back-pain; Physical-activity Assessment; Risk-factors; Musculoskeletal Disorders; Reliability; Movements; Validity; System; Gt3x+accelerometer
Nnaji, Chukwuma; Lee, Hyun Woo; Karakhan, Ali; Gambatese, John. (2018). Developing a Decision-Making Framework to Select Safety Technologies for Highway Construction. Journal Of Construction Engineering And Management, 144(4).
View Publication
Abstract
Highway construction has consistently reported relatively high fatality rates largely because of the considerable exposure of workers to live traffic. To address this anomaly, traffic control planners are tasked with making decisions geared toward reducing hazardous situations caused by transiting vehicles and construction equipment. The growing application of technologies to enhance worker safety should be considered during the traffic control planning process. In certain cases, decisions such as choosing among technology options are made using experiential individual knowledge without the application of scientific and systematic decision-making methods. Use of experience-based decision making in this context is largely the result of sparse literature on scientific methods of selecting between alternatives in highway construction work zones. By applying the Choosing by Advantages (CBA) decision-making method, a process that achieves sound and effective decisions, the current study aims to fill the gap in practice by proposing a decision-making framework that could enhance the value-cost selection process of safety technologies in highway construction work zones. A situation that applied work zone intrusion alert technologies (WZIATs) was selected as a case study. Using a focus group session and case projects as an evaluation study process, the proposed framework based on the CBA decision-making process was applied to evaluate three WZIATs. Findings from the current study will benefit safety professionals and practitioners by providing a step-by-step approach to make sound decisions that can enhance the level of safety in highway construction work zones.
Keywords
Construction Equipment; Decision Making; Occupational Safety; Project Management; Road Building; Effective Decisions; Decision-making Framework; Value-cost Selection Process; Highway Construction Work Zones; Work Zone Intrusion Alert Technologies; Cba Decision-making Process; Sound Decisions; Traffic Control Planners; Worker Safety; Traffic Control Planning Process; Technology Options; Scientific Decision-making Methods; Systematic Decision-making Methods; Experience-based Decision Making; Advantages Decision-making Method; Safety Technologies; Knowledge; Signs
Lee, Yong-Cheol; Shariatfar, Moeid; Rashidi, Abbas; Lee, Hyun Woo. (2020). Evidence-Driven Sound Detection for Prenotification and Identification Of Construction Safety Hazards and Accidents. Automation In Construction, 113.
View Publication
Abstract
As the construction industry experiences a high rate of casualties and significant economic loss associated with accidents, safety has always been a primary concern. In response, several studies have attempted to develop new approaches and state-of-the-art technology for conducting autonomous safety surveillance of construction work zones such as vision-based monitoring. The current and proposed methods including human inspection, however, are limited to consistent and real-time monitoring and rapid event recognition of construction safety issues. In addition, the health and safety risks inherent in construction projects make it challenging for construction workers to be aware of possible safety risks and hazards according to daily planned work activities. To address the urgent demand of the industry to improve worker safety, this study involves the development of an audio-based event detection system to provide daily safety issues to laborers and through the rapid identification of construction accidents. As an evidence-driven approach, the proposed framework incorporates the occupational injury and illness manual data, consisting of historical construction accident data classified by types of sources and events, into an audio-based safety event detection framework. This evidence-driven framework integrated with a daily project schedule can automatically provide construction workers with prenotifications regarding safety hazards at a pertinent work zone as well as consistently contribute to enhanced construction safety monitoring by audio-based event detection. By using a machine learning algorithm, the framework can clearly categorize the narrowed-down sound training data according to a daily project schedule and dynamically restrict sound classification types in advance. The proposed framework is expected to contribute to an emerging knowledge base for integrating an automated safety surveillance system into occupational accident data, significantly improving the accuracy of audio-based event detection.
Keywords
Construction Projects; Occupational Hazards; Construction Workers; Construction; System Safety; Video Surveillance; Work-related Injuries; Audio-based Accident Recognition; Autonomous Safety Surveillance; Construction Safety; Evidence-driven Sound Event Detection; Accident Prevention; Accidents; Audio Acoustics; Classification (of Information); Construction Industry; Health Hazards; Health Risks; Knowledge Based Systems; Learning Algorithms; Losses; Machine Learning; Monitoring; Motion Compensation; Occupational Diseases; Steel Beams And Girders; Audio-based; Construction Accidents; Construction Work Zones; Historical Construction; Sound Event Detection; State-of-the-art Technology; Vision Based Monitoring; Algorithm; System
Zhang, Zhenyu; Lin, Ken-yu; Lin, Jia-hua. (2022). 2safe: A Health Belief Model-integrated Framework For Participatory Ergonomics. Theoretical Issues In Ergonomics Science, 1 – 18.
View Publication
Abstract
Abstract Initiating ergonomics interventions in a business environment requires changes in the behaviour of relevant actors. When participating in an intervention, researchers need to collect and share information with practitioners to help them make better behaviour-related decisions. This paper describes the five-step 2SAFE (Surveillance, Screening, Assessment, Framing, and Evaluation) planning framework, which can be used to guide research-practice collaboration in participatory ergonomics programmes. This framework combines the understanding of work-related musculoskeletal disorders with the principles of the health belief model. This theoretical synthesis empowers the framework to address the following critical challenges: (1) how to make data collection processes attuned to the nature of ergonomic injuries; and (2) how to transform the data collected into immediately usable information for practitioners to change their behaviours. The framework is interdisciplinary and can facilitate transfer of knowledge between ergonomics and health behaviour science. The framework can enhance the ability of researchers to collaborate with practitioners and bring participatory ergonomics programmes closer to success. In the long term, we hope that this framework can lead to more high-quality interventions that are able to prevent work-related musculoskeletal disorders in various industrial settings. [ABSTRACT FROM AUTHOR]; Copyright of Theoretical Issues in Ergonomics Science is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Keywords
Health Belief Model; Intervention Programme; Participatory Ergonomics; Planning Framework; Work-related Musculoskeletal Disorders
Launching the Inspire Fund: An early step for CBE’s Office of Research “For a small college, CBE has a broad range of research paradigms, from history and arts, to social science and engineering.” — Carrie Sturts Dossick, Associate Dean of Research Upon taking on the role of Associate Dean of Research, Carrie Sturts Dossick, professor in the Department of Construction Management, undertook listening sessions to learn about the research needs of faculty, staff and students across the College of Built…
In 2021 the College of Built Environments launched the CBE Inspire Fund, designed to support CBE research activities for which a relatively small amount of support can be transformative. The second year of awards have just been announced, supporting five projects across 4 departments within the college as they address topics such as food sovereignty, anti-displacement, affordable housing, and health & wellbeing. This year’s awardees include: Defining the New Diaspora: Where Seattle’s Black Church Congregants Are Moving and Why Rachel…
Assistant Professor, Department of Construction Management
Fred is an Assistant Professor with the Department of Construction Management (CM) at the University of Washington (UW). Prior to joining UW in September 2021, he was an Assistant Professor at Texas State University in San Marcos, TX where he taught and performed research in the areas of concrete materials, durability, and sustainable infrastructure construction. He received his PhD in Civil Engineering from the University of Texas at Austin in 2016.
Dr. Aguayo is interested in research application that contribute to facilitating the implementation of sustainable and novel cement-based systems in infrastructure and building applications such as alternative cement binders, supplementary cementing materials (SCMs), recycled aggregates, and high performing concretes. His research group focuses on evaluating and characterizing deterioration processes in new and existing cementitious materials, while also developing test methods to predict and enhance their performance and durability in the field. He primarily examines durability-related issues in cement-based materials such as corrosion, carbonation, ASR, sulfate attack, and early-age volume changes.
Dr. Aguayo is a well-established researcher with over 13 years of experience and over $1.2M in funded research projects as either PI or Co-PI since 2016. His work has been supported by both private industry and public agencies including LarfargeHolcim, Texas DOT, Minnesota DOT, New Mexico DOT, National Research Road Alliance (NRRA), and the Portland Cement Association (PCA). He is an active member of the American Concrete Institute and ASTM International, and participates in several committees related to concrete durability (ACI 201) and material science of cementitious systems (ACI 236).
Previous studies on construction hazard prevention have shown that almost 50% of construction fatalities and accidents can be linked to decisions made during the design process. To address the influence of upstream design decisions on worker safety, researchers have developed the Prevention through Design (PtD) concept to proactively eliminate safety hazards in the workplace. In response, CBE researchers, Hyun Woo “Chris” Lee, PD Koon Endowed Associate Professor in Construction Management and Dr. Laura Osburn, Senior Research Scientist in Construction Management,…
Julie Kriegh, researcher with the Carbon Leadership Forum and other CBE research centers, and owner of Kriegh Architecture Studios, collaborated with other CBE faculty and external partners to lead a UW CBE studio course in collaboration with Google that developed and delivered a design proposal for a sustainable data center. CBE collaborators included Hyun Woo “Chris” Lee, P.D. Koon Professorship in Construction Management; Jan Whittington, Associate Professor of the Department of Urban Design and Planning, and Director of the Urban…
This winter quarter the College of Built Environments launched its new CBE Inspire Fund. Designed to support CBE research activities for which a relatively small amount of support can be transformative, in mid-February the college awarded the first 6 grants. Projects supported by the CBE Inspire Fund hail from 4 departments within the college and tackling topics such as food systems, mapping cultural spaces, and energy justice. The CBE Inspire Fund is the first research funding opportunity offered by the…