Skip to content

Challenges to energy retrofitting of existing office buildings in high-rise high-density cities: The case of Hong Kong

Linyan Chen, Amos Darko, Mayowa I. Adegoriola, Albert P.C. Chan, Yang Yang, Mershack O. Tetteh, “Challenges to energy retrofitting of existing office buildings in high-rise high-density cities: The case of Hong Kong,” Energy and Buildings, Volume 312, 2024, 114220, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2024.114220.

View Publication

Abstract

Achieving carbon neutrality by 2050 has become a global goal, sparking concerns regarding energy consumption and carbon emissions in building operations. Office buildings in high-rise high-density cities serve as central business districts, contributing significantly to the city’s economic activity and consuming a lot of energy. The process of retrofitting existing office buildings for energy efficiency in high-rise high-density cities tends to be challenging. However, there is a lack of comprehensive understanding of the challenges involved in office buildings’ energy retrofitting, as they have not been thoroughly explored. This study aims to investigate the challenges to the existing office building energy retrofitting (EOBER) in high-rise high-density cities with real cases in Hong Kong. Initially, a systematic literature review was undertaken to identify 49 potential EOBER challenges and categorized into seven groups: technical, financial, institutional, social, environmental, regulatory, and other categories. Afterward, 23 EOBER challenges were identified through 24 semi-structured interviews with 36 real office building energy retrofitting cases in Hong Kong. Moreover, these challenges were quantified by the Z-numbers-based Delphi survey and analysis. Results show that regulatory challenges are the primary challenges, followed by financial challenges. The lack of government incentives, policies, legislation and regulations significantly hinders practitioners’ ability to engage in energy retrofitting initiatives. The long payback period of building energy retrofitting poses a critical financial concern for practitioners embracing such initiatives. In the end, this research proposed integrated strategies to tackle these challenges and increase building energy efficiency, including launching financial and regulatory incentives, shortening the interval for mandatory energy audits, disseminating knowledge, and diversifying finance channels of building energy retrofitting. The findings contribute to the body of knowledge by employing systems thinking to identify and evaluate EOBER challenges in high-rise high-density cities through empirical methodologies. Moreover, this study provides valuable references for practitioners in navigating these challenges and minimizing risks associated with the retrofitting process.

A-state-of-the-art review of risk management process of green building projects

Wang, L., Chan, D. W. M., Darko, A., & Oluleye, B. I. (2024). A-state-of-the-art review of risk management process of green building projects. Journal of Building Engineering, 86. https://doi.org/10.1016/j.jobe.2024.108738

View Publication

Abstract

Green buildings (GB) have attracted significant attention for improving sustainability and reducing carbon emissions in the building sector. Like traditional projects, risk management plays a crucial role in green projects. The inadequacy of risk management may lead to diminished workforce performance, delays in project schedules, and poor quality in GB projects. To comprehend risk management in GB projects, it is essential to conduct a state-of-the-art review. This study applied the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) method to select 52 records from the database ‘Scopus’ and ‘Web of Science’ (WoS). A bibliometric analysis indicated that the emphasis in risk management is on the identification and evaluation of risks in engineering projects. Subsequently, a thematic analysis displayed the research topics related to risk management, including (1) methods for identifying risks, (2) risk identification in special conditions, (3) risk assessment with fuzzy sets, social network analysis (SNA), and interpretive structural modeling (ISM), and (4) risk assessment with other technologies. This study focused on the research gaps within the risk management field, specifically in risk identification methods, risk evaluation methods, and risk-mitigating processes. Finally, with research gaps, this study also proposed related research directions for risk management in GB projects.

A Comparative Review of Polymer, Bacterial-based, and Alkali-Activated (also Geopolymer) Binders: Production, Mechanical, Durability, and Environmental impacts (life cycle assessment (LCA))

Nodehi, M., Aguayo, F., Madey, N., & Zhou, L. (2024). A Comparative Review of Polymer, Bacterial-based, and Alkali-Activated (also Geopolymer) Binders: Production, Mechanical, Durability, and Environmental impacts (life cycle assessment (LCA)). Construction & Building Materials, 422. https://doi.org/10.1016/j.conbuildmat.2024.135816
View Publication

Abstract

This review paper presents a comparative evaluation of polymer, bacterial-based, alkali-activated, and geopolymer binders in regard to their production methods, mechanical properties, their environmental/life cycle assessment (LCA), and durability when exposed to deteriorating cycles (such as sulfates, acids, and high temperatures). The significance of this study is to compare the results of over 400 journal papers, which present an in-depth analysis of fresh and hardened state properties of various binders that are advocated in the literature. Historically, Portland cement is generally considered a binder that plays a major role in any cementitious composites because of its high availability, and relatively inexpensive cost. Despite its significant benefits, it is known that the manufacturing process of Portland cement is energy and carbon intensive, and the resulted material often has shortcomings when exposed to deteriorating causes such as sulfates, acids, and high temperatures. However, recent movement toward net-zero as well as ultra-high-performance practices has increased the need for a more sustainable and durable binding system. Based on the result of this paper, each binder presents specific advantages when compared to Portland cement for specific applications that can be a better choice for their ultra-high capabilities and ecological properties. This includes the significantly better performance of alkali-activated binders (specifically geopolymers), under high temperatures, or very rapid strength gain of polymer (e.g., epoxy, polyester, and vinyl ester) binders, making them great alternatives to Portland cement, for rapid repair and rehabilitation purposes. Similarly, bacterial concrete also have certain capabilities such as long term durability and the potential for a continued self-repair or self-healing. In terms of environmental impacts, however, polymer binders are heavily depedant on their source of energy (e.g., petroleum vs. bio-based resins) while alkali-activated concretes and geopolymers have activators' large contributions to overall LCA impact categories. For bacterial binders, the used urea and nutrition can play a key role in their LCA results. Finally, based on the highlighted capabilities of each binder, recommendations on performance-based or hybrid design methods and specifications for an optimized system are also provided. Novel areas in polymer, bacterial-based, alkali-activated, and geopolymer binders are also included.

Keywords

Binding agents; Polymer concreteBacterial (or bio) concrete; Alkali-activated materials and geopolymer; Mechanical and durability properties

Automating building environmental assessment: A systematic review and future research directions

T.A.D.K. Jayasanka, Amos Darko, D.J. Edwards, Albert P.C. Chan, Farzad Jalaei, Automating building environmental assessment: A systematic review and future research directions, Environmental Impact Assessment Review, Volume 106, 2024, 107465, ISSN 0195-9255, https://doi.org/10.1016/j.eiar.2024.107465.

View Publication

Abstract

Building environmental assessment (BEA) is critical to improving sustainability. However, the BEA process is inefficient, costly, and often inaccurate. Because automation has the potential to enhance the efficiency and accuracy of the BEA process, studies have focused on automating BEA (ABEA). Updated until now, a comprehensive analysis of prevailing literature on ABEA remains absent. This study conducts the first comprehensive systematic analysis appraising the state-of-the-art of research on ABEA. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guided to systematically analyse 91 relevant studies. Results uncover that only 29.7% of BEA systems worldwide have automated their processes, with the US LEED residing at the vanguard of automation efforts. The New Buildings scheme was mostly focused on, while largely ignoring other schemes, e.g., Existing Buildings. Five key digital approaches to ABEA were revealed, namely building information modelling (BIM) and plug-in software, BIM-ontology, data mining and machine learning, cloud-BIM, and digital twin-based approaches. Based on identified gaps, future research directions are proposed, specifically: using data mining and machine learning models for ABEA; development of a holistic cloud-based approach for real-time BEA; and digital twin for dynamic BEA. This study generates a deeper understanding of ABEA and its theoretical implications, such as major constructs and emerging perspectives, constitute a basis for holistic, and innovation in, BEA.

An Ontological Analysis for Comparison of the Concepts of Sustainable Building and Intelligent Building

Borhani, A., Borhani, A., Dossick, C. S., & Jupp, J. (2024). An Ontological Analysis for Comparison of the Concepts of Sustainable Building and Intelligent Building. Journal of Construction Engineering and Management, 150(4). https://doi.org/10.1061/JCEMD4.COENG-13711

View Publication

Abstract

The concept of intelligent building is emerging in the contemporary built environment. Intelligent buildings aim to leverage digital technologies and information throughout the building’s life cycle (design, construction, and operation phases) to improve the building’s performance and value. In recent years, academic scholars and industry practitioners have made efforts to articulate the intelligent building concept and identify its components. However, there is still no commonly accepted definition for the term intelligent (or smart) building. Furthermore, the term is used interchangeably with similar terms such as sustainable building and high-performance building. The primary gaps in research are the lack of a holistic and clearly defined list of intelligent building components. This gap limits building stakeholders’ abilities to decide which technologies to implement in their buildings, prove its capabilities and advantages, and improve its performance. In response to the identified gaps, this research conceptualizes intelligent building in comparison with the concept of sustainable building. We identified the key components that each concept entails and conducted a comparative analysis of the identified components. The findings of this research include a categorization of intelligent building’s definitions which helps to conceptualize intelligent building and distinguish it from other similar concepts. In addition, the research team used the developed ontologies for intelligent and sustainable buildings to provide a fundamental overview of the structure of building evaluation systems and their different approaches for determining evaluation criteria. Overall, this study contributes to the body of knowledge by identifying and classifying components of intelligent buildings, which is a prerequisite for intelligent buildings’ evaluation. It also makes a distinction between the concepts of intelligent building and sustainable building in order to determine their context and applications.

 

Incentive-based coordination for scheduled delivery in prefab construction

Kim, Y.-W., & Rhee, B.-D. (2024). Incentive-based coordination for scheduled delivery in prefab construction. Construction Management and Economics, 1–16. https://doi.org/10.1080/01446193.2024.2305763.

View Publication

Abstract

An increasing number of projects are adopting prefabrication to economize on time, labor, and materials in fixed-position layout operations, such as construction, ship building, and aircraft manufacturing. In such contexts, independent contractor and fabricator make interdependent decisions, which calls for prudent supply chain management because performance relies on coordination between their decisions. Many studies have developed integrated systems and propose various algorithms for scheduling efficiency and reliability. Nevertheless, they pay scant attention to conflicting interests amongst independent partners, which may result in subpar performance not only for the supplier but for the contractor as well. Coordination of conflicting interests has been extensively studied in economics and supply chain management; yet, those studies focus on order-quantity decisions under demand uncertainty for profit maximization, while managers in fixed-position operations are more concerned about delivery decisions under scheduling uncertainty for cost minimization. We consider the case of construction and explore a contractual scheme that aligns the agents' decisions for coordination in a construction supply chain. Specifically, we propose a supplier rebate for coordination: the supplier grants a rebate if the contractor accepts the shipment in accordance with the delivery schedule that the contractor initially chose. We show that the optimal rebate fully coordinates the supply chain to minimize the joint supply chain costs. Thus, both the contractor and supplier benefit from the coordination by negotiating a mutually acceptable way to allocate the savings in joint costs between them. We further show that the rebate motivates the contractor to enhance its work scheduling.

Keywords

Construction supply chain; coordination; delivery schedule reliability; prefabrication; rebate for scheduled delivery

Allocating Safety Cost using in Construction Site

Kim, S., & Kim, Y. (2023). Allocating Safety Cost using in Construction Site. Tehnički Glasnik, 17(4), 594–597. https://doi.org/10.31803/tg-20230104151203

View Publication

Abstract

Environments, Health, and Safety (EHS) activities are strongly linked to the concept of sustainability in the current construction industry and consequently absorb more financial and managerial attention. One of major obstacles in EHS costing is that most EHS costs are buried in general overhead costs. Therefore, EHS costs lacks transparency, making it hard to allocate EHS costs to relevant construction projects. This paper present a recent study in which a method of activity-based costing (ABC) has been applied to safety costs at a contractor's home office. The list of safety activities, their cost drivers as well as their cost information on one of Korean general contractor is provided. The authors expect that the application of ABC will improve transparency in costing EHS costs as well as allocating EHS costs to projects.

Keywords

budget; safety accident; safety management; safety law

Applying implementation science to evaluate participatory ergonomics program for continuous improvement: A case study in the construction industry

Zhang, Z., & Lin, K.-Y. (2023). Applying implementation science to evaluate participatory ergonomics program for continuous improvement: A case study in the construction industry. Applied Ergonomics, 115, 104181–104181. https://doi.org/10.1016/j.apergo.2023.104181

View Publication

Abstract

While participatory ergonomics (PE) presents numerous benefits, its empirical effectiveness remains elusive due to the lack of transparency in implementation contexts and processes. This hinders our ability to discern the reasons behind a program's success or failure and to determine optimization and adaptation strategies. To unravel this "black box," we present a case study using implementation science to evaluate a PE program and illuminate the mechanisms linking process to outcome. The study examines a 4.5-year PE program at a construction company, targeting musculoskeletal disorders (MSDs) from material-cart handling. Using the RE-AIM framework and Implementation Causal Pathway Model, we evaluated implementation process and catalogued contextual factors through worker surveys (n = 106), safety document review (27 training sessions and 7 construction projects), and key informant observations. We assessed the program's impact using a 42-worker survey and an analysis of 8-year injury data, and determined the return-on-investment (ROI) by monetizing the collected data. The program achieved significant impact: Workers' ergonomic knowledge improved from 73% in baseline to 86% in follow-up; 97% of workers reported at least one positive change in their crews; and no cart handling injuries occurred after the first program change, resulting in a ROI rate of 1.99. Implementation process evaluation revealed that seamless integration, tailored intervention, and ongoing adjustments contributed to the success. Five organizational factors necessary for the effective functioning of these three strategies were identified, along with three moderators that amplified their influence. Finally, this case study demonstrates that implementation science offers a coherent structure for evaluating PE programs, uncovering mechanisms of change, and informing future improvements and adaptations. Our research facilitates knowledge transfer from implementation science to ergonomics, eventually leading to more cost-effective PE programs that are faithfully implemented across various industrial settings to prevent MSDs.
• This case study employs implementation science to assess a participatory ergonomics program within the construction industry.
• The evaluation encompasses the implementation process and context, program outcomes, and the return on investment.
• We delve into the mechanisms of change, establishing a link between the process and its intervention outcomes.
• We identify critical implementation strategies, including their preconditions and moderating factors.
• Through the lens of implementation science, we provide a structured framework for evaluating the execution of ergonomic intervention, thereby guiding improvements and future adaptations

Keywords

Case study; Implementation science; Participatory ergonomics

Charging Forward: reaching a zero-emission transit fleet with a public-private partnership project

UW researchers explore using public-private partnerships to convert bus bases for electric-powered vehicle charging. Conversion of bus base facilities, the heart of transit operations, for electric vehicle charging is a large-scale project with many players and complex needs. One option for transit agencies working to shift to a zero-emission fleet is a public-private partnership model (P3), which defers upfront capital construction costs and has the potential to help agencies meet long-term sustainability and resiliency goals. This research out of the…