Skip to content

A Case Study of the Failure of Digital Communication to Cross Knowledge Boundaries in Virtual Construction

Neff, Gina; Fiore-Silfvast, Brittany; Dossick, Carrie Sturts. (2010). A Case Study of the Failure of Digital Communication to Cross Knowledge Boundaries in Virtual Construction. Information Communication & Society, 13(4), 556 – 573.

View Publication

Abstract

When can digital artefacts serve to bridge knowledge barriers across epistemic communities? There have been many studies of the roles new information and communication technologies play within organizations. In our study, we compare digital and non-digital methods of inter-organizational collaboration. Based on ethnographic fieldwork on three construction projects and interviews with 65 architects, engineers, and builders across the USA, we find that IT tools designed to increase collaboration in this setting instead solidify and make explicit organizational and cultural differences between project participants. Our study suggests that deeply embedded disciplinary thinking is not easily overcome by digital representations of knowledge and that collaboration may be hindered through the exposure of previously implicit distinctions among the team members' skills and organizational status. The tool that we study, building information modelling, reflects and amplifies disciplinary representations of the building by architects, engineers, and builders instead of supporting increased collaboration among them. We argue that people sometimes have a difficult time overcoming the lack of interpretive flexibility in digital coordinating tools, even when those tools are built to encourage interdisciplinary collaboration.

Keywords

Digital Communications; Data Transmission Systems; Communication & Technology; Digital Electronics; System Analysis; Building Information Modelling; Collaboration; Qualitative Methods; Teams; Civil Engineering Computing; Digital Communication; Groupware; Knowledge Representation; Organisational Aspects; Virtual Reality; Case Study; Virtual Construction; Knowledge Barriers; Epistemic Community; Interorganizational Collaboration; Ethnographic Fieldwork; Interpretive Flexibility; Digital Coordinating Tool; Digital Collaboration; Technology; Objects; Design; Representations; Organizations

Three Pathways to Highly Energy Efficient Buildings: Assessing Combinations of Teaming and Technology

Homayouni, Hoda; Dossick, Carrie Sturts; Neff, Gina. (2021). Three Pathways to Highly Energy Efficient Buildings: Assessing Combinations of Teaming and Technology. Journal Of Management In Engineering, 37(2).

View Publication

Abstract

Highly energy efficient (HEE) buildings require a whole-system approach to building design. Scholars have suggested many tools, techniques, and processes to address the cross-disciplinary complexities of such an approach, but how these elements might be best combined to lead to better project outcomes is yet unknown. To address this, we surveyed architects associated with 33 AIA-COTE award-winning projects on the social, organizational, and technological elements of whole-system design (WSD) practices. We then used fuzzy sets-qualitative comparative analysis (fsQCA) to analyze the interdependencies among those elements. We found three distinct pathways for the design and construction of HEE buildings: information-driven, process-driven, or organization-driven. We also found that HEE buildings share some conditions for success, including having shared goals, owners engagement in the design process, and frequent and participatory interorganizational meetings. Our findings can help practitioners strategize and make decisions on incorporating WSD elements associated with their project types. Moreover, these results provide a launchpad for scholars to investigate complementarities among elements facilitating the design and construction process of HEE projects.

Keywords

Buildings (structures); Construction; Design Engineering; Energy Conservation; Fuzzy Set Theory; Innovation Management; Organisational Aspects; Project Management; Team Working; Whole-system Approach; Building Design; Cross-disciplinary Complexities; Social Elements; Organizational Elements; Technological Elements; Whole-system Design Practices; Fuzzy Set; Distinct Pathways; Hee Buildings; Project Types; Construction Process; Hee Projects; Highly Energy Efficient Buildings; Whole-system Design; Energy Efficient Buildings; Building Information Modeling; Integrated Project Teams; Fuzzy Sets-qualitative Comparative Analysis

Teaching Life-Cycle Thinking in Construction Materials and Methods: Evaluation of and Deployment Strategies for Life-Cycle Assessment in Construction Engineering and Management Education

Lin, K. Y.; Levan, A.; Dossick, C. S. (2012). Teaching Life-Cycle Thinking in Construction Materials and Methods: Evaluation of and Deployment Strategies for Life-Cycle Assessment in Construction Engineering and Management Education. Journal Of Professional Issues In Engineering Education And Practice, 138(3), 163 – 170.

View Publication

Keywords

Sustainability; Design

Hygrothermal Behavior Of Post-retrofit Housing: A Review Of The Impacts Of The Energy Efficiency Upgrade Strategies.

Recart, Carolina; Dossick, Carrie Sturts. (2022). Hygrothermal Behavior Of Post-retrofit Housing: A Review Of The Impacts Of The Energy Efficiency Upgrade Strategies. Energy & Buildings, 262.

View Publication

Abstract

Improving energy efficiency of existing buildings is currently among the most diverse and extensive mitigation opportunities to reduce energy consumption and CO2 emissions worldwide. However, the implementation of energy-saving measures has caused unintended impacts, often correlated with dampness and mold growth connected to poor hygrothermal behavior in residential buildings. The focus of this paper is research on the impacts of energy efficiency measures (EEMs) in regard to the hygrothermal behavior resulting from the interaction of building's envelope, indoor environment, and occupants. The results show that dampness and mold growth are by no means exclusive to neglected houses, since the occurrence of these pathologies actually depends upon a complex set of conditions, including indoor and outdoor conditions, occupancy, maintenance, ventilation, mechanical systems, and quality of the envelope. We found that building envelope post-retrofit may suffer from higher levels of moisture and dampness, higher condensations risks, and a faster structural degradation caused by higher humidity levels. We also found that measuring hygrothermal behavior may play a role in more accurately predicting both overall energy consumption and occupant comfort. While hygrothermal behavior may be problematic, we found evidence that retrofits may moderately improve thermal comfort. (c) 2022 Elsevier B.V. All rights reserved.

Keywords

Energy Consumption; Energy Consumption Of Buildings; Carbon Emissions; Geothermal Ecology; Housing; Thermal Comfort; Building Envelopes; Dampness And Mold; Energy Retrofits; Hygrothermal Behavior; Residential Buildings; Unintended Impacts; Indoor Air-quality; Low-income; Environmental-quality; Assistance-program; Building Envelope; Health; Ventilation; Weatherization; Performance; Mold Growths; Indoor Environments; Moisture Effects; Energy Efficiency; Residential Areas; Mechanical Systems; Moisture Content; Green Buildings; Energy Conservation; Carbon Dioxide; Mold; Emission Measurements; Emissions; Mitigation; Buildings; Occupancy; Retrofitting; Mechanical Properties

Quantifying the Impact of Facilitation on Transactive Memory System Formation in Global Virtual Project Networks

Comu, Semra; Iorio, Josh; Taylor, John E.; Dossick, Carrie Sturts. (2013). Quantifying the Impact of Facilitation on Transactive Memory System Formation in Global Virtual Project Networks. Journal Of Construction Engineering & Management, 139(3), 294 – 303.

View Publication

Abstract

Building strong ties between geographically dispersed project participants is crucial to project success. In global project networks, many firms have adopted virtual collaboration tools to address the challenges imposed by temporal and geographical distance. Some researchers have examined the role of facilitators and found that process facilitation can improve collaboration. Research has also shown that facilitators can be drawn into content interactions, which may negatively impact collaboration effectiveness in virtual workspaces. Research to date has not quantified this negative impact. In this study, the formation and maintenance of transactive memory systems (TMS) in two facilitated and two nonfacilitated global virtual project networks were investigated, each executing a 2-month project. Using TMS formation and cohesive subgroup formation as a proxy for performance, quantitative evidence was found that demonstrates a negative impact on collaboration effectiveness when facilitators engage in content facilitation in virtual project networks. This paper shows that this negative impact restricts the establishment of TMSs. These findings have important implications for understanding and designing appropriate facilitator interactions in global virtual project networks. DOI: 10.1061/(ASCE)CO.1943-7862.0000610. (C) 2013 American Society of Civil Engineers.

Keywords

Globalisation; Groupware; International Collaboration; Production Engineering Computing; Project Management; Process Facilitation; Transactive Memory System Formation; Global Virtual Project Network; Virtual Collaboration Tool; Temporal Distance; Geographical Distance; Content Interaction; Virtual Workspace; Tms Cohesive Subgroup Formation; Content Facilitation; Knowledge Transfer; Group Cohesiveness; Group Cohesion; Performance; Teams; Models; Globalization; Networks; Project Networks; Social Network Analysis; Transactive Memory Systems; Virtual Teams

Guideline for Building Information Modeling in Construction Engineering and Management Education

Lee, Namhun; Dossick, Carrie S.; Foley, Sean P. (2013). Guideline for Building Information Modeling in Construction Engineering and Management Education. Journal Of Professional Issues In Engineering Education And Practice, 139(4), 266 – 274.

View Publication

Keywords

Buildings (structures); Computer Aided Instruction; Construction Industry; Educational Courses; Management Education; Structural Engineering Computing; Building Information Modeling; Construction Engineering And Management Education; Cem Education; Bim; Cem Curriculum

Where to Focus for Successful Adoption of Building Information Modeling within Organization

Won, Jongsung; Lee, Ghang; Dossick, Carrie; Messner, John. (2013). Where to Focus for Successful Adoption of Building Information Modeling within Organization. Journal Of Construction Engineering And Management, 139(11).

View Publication

Abstract

Suggestions abound for successful adoption of building information modeling (BIM); however, a company with limited resources cannot adopt them all. The factors that have top management priority for successful accomplishment of a task are termed critical success factors (CSFs). This paper aims to derive the CSFs for four questions commonly asked by companies in the first wave of BIM adoption: (1)What are the CSFs for adopting BIM in a company? (2)What are the CSFs for selecting projects to deploy BIM? (3)What are the CSFs for selecting BIM services? (4)What are the CSFs for selecting company-appropriate BIM software applications? A list of consideration factors was collected for each question, based on a literature review, and then refined through face-to-face interviews based on experiences of BIM experts. An international survey was conducted with leading BIM experts. From the 206 distributed surveys, 52 responses from four continents were collected. This study used quantitative data analysis to derive a manageable number (4-10) of CSFs for each category from dozens of anecdotal consideration factors. The derived CSFs are expected to be used as efficient metrics for evaluating and managing the level of BIM adoption and as a basis for developing BIM evaluation models in the future.

Keywords

Architectural Cad; Building Information Modeling; Bim; Critical Success Factors; Csf; Management; Building Information Models; Organizations; Computer Software; Building Information Modeling (bim); Critical Success Factor (csf); Organizational Strategy; Bim Software Application; Bim Service; Bim-assisted Project; Information Technologies

Messy Work in Virtual Worlds: Exploring Discovery and Synthesis in Virtual Teams

Dossick, Carrie Sturts(1). (2014). Messy Work in Virtual Worlds: Exploring Discovery and Synthesis in Virtual Teams. Lecture Notes In Computer Science (including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics), 8683, 134 – 142.

View Publication

Abstract

The challenges of engineering team collaboration—establishing trust, fostering productive informal communication, cultivating knowledge exchange—are often exacerbated in virtual teams by geographical separation as well as team members’ cultural and linguistic differences. Researchers have observed that powerful collaboration in collocated teams is supported by shared visualizations with which the team engages in informal, flexible and active ways. In studying virtual team interactions in a virtual world known as the CyberGRID, we see that just as with AEC collocated teams, shared visualizations were instrumental for the teams as they define, understand, and generate knowledge when working on interrelated tasks. Emerging from this analysis is an empirically supported theory that while avatar-model interaction supports mutual discovery, more messy interactions of brainstorming, knowledge exchange and synthesis requires flexible, active, and informal shared visualizations. © Springer International Publishing Switzerland 2014.

Keywords

Communication; Flow Visualization; Information Technology; Knowledge Management; Visualization; Building Information Model; Bim; Collaboration; Geographical Separation; Global Virtual Teams; Informal Communication; Linguistic Differences; Virtual Team Interactions; Virtual Worlds

Messy Talk in Virtual Teams: Achieving Knowledge Synthesis through Shared Visualizations

Dossick, Carrie Sturts; Anderson, Anne; Azari, Rahman; Iorio, Josh; Neff, Gina; Taylor, John E. (2015). Messy Talk in Virtual Teams: Achieving Knowledge Synthesis through Shared Visualizations. Journal Of Management In Engineering, 31(1).

View Publication

Abstract

Engineering teams collaborating in virtual environments face many technical, social, and cultural challenges. In this paper we focus on distributed teams making joint unanticipated discoveries in virtual environments. We operationalize a definition of messy talk as a process in which teams mutually discover issues, critically engage in clarifying and finding solutions to the discovered issues, exchange their knowledge, and resolve the issue. Can globally distributed teams use messy talk via virtual communication technology? We analyzed the interactions of four distributed student teams collaborating on a complex design and planning project using building information models (BIMs) and the cyber-enabled global research infrastructure for design (CyberGRID), a virtual world specifically developed for collaborative work. Their interactions exhibited all four elements of messy talk, even though resolution was the least common. Virtual worlds support real-time joint problem solving by (1)providing affordances for talk mediated by shared visualizations, (2)supporting team perceptions of building information models that are mutable, and (3)allowing transformations of those models while people were together in real time. Our findings suggest that distributed team collaboration requires technologies that support messy talkand iterative trial and errorfor complex multidimensional problems. (C) 2014 American Society of Civil Engineers.

Keywords

Buildings (structures); Data Visualisation; Design; Grid Computing; Groupware; Knowledge Management; Structural Engineering Computing; Team Working; Virtual Manufacturing; Virtual Reality; Virtual Teams; Knowledge Synthesis; Engineering Teams Collaboration; Virtual Environments; Technical Challenges; Social Challenges; Cultural Challenges; Distributed Teams Making; Messy Talk; Knowledge Exchange; Globally Distributed Teams; Virtual Communication Technology; Distributed Student Teams; Design And Planning Project; Building Information Models; Bim; Cyber-enabled Global Research Infrastructure; Cybergrid; Virtual World; Collaborative Work; Team Perceptions; Iterative Trial And Error; Complex Multidimensional Problems; Visual Representations; Construction; Technology; Implementation; Collaboration; Communication; Teamwork; Digital Techniques; Knowledge-based Systems

BIM Curriculum Design in Architecture, Engineering, and Construction Education: A Systematic Review

Abdirad, Hamid; Dossick, Carrie S. (2016). BIM Curriculum Design in Architecture, Engineering, and Construction Education: A Systematic Review. Journal Of Information Technology In Construction, 21, 250 – 271.

Abstract

In the past several years, Building Information Modeling (BIM) adoption has grown significantly in the architecture, engineering, and construction (AEC) industry. In response to this trend, the industry and academia realized that BIM education in university curricula is an important requirement for satisfying educational demands of the industry, and a notable body of research has reported strategies AEC programs implemented to incorporate BIM in their curricula. However, no study has comprehensively reviewed and synthesized the research on sfrategies adopted by educators. To bridge this gap in the literature, this paper presents a systematic review of research on BIM curriculum design in AEC education. The authors report on the trends of research on BIM curriculum design (e.g. methods, timelines, and contexts) as well as a synthesis of implemented pedagogical strategies with detailed discussions on their implications and effectiveness across different studies and contexts. These strategies address a variety of important pedagogical issues such as enrolment of students, optional or required BIM use, important competencies and skills, tutoring methods, industry engagement, designing assignments, and assessment methods and criteria. This synthesis shows that designing pedagogical sfrategies for BIM education is complex and challenging, and AEC programs need to make trade-offs between advantages and disadvantages associated with these strategies. The results also highlight the need for more diverse research designs and settings to bridge the gaps identified in BIM curriculum research to date. Finally, the authors present a literature-based framework of BIM curriculum design sfrategies as well as a set of recommendations that can be used BIM educators and researchers as a guide for designing or assessing their BIM curricula in future research.

Keywords

Bridges; Curricula; Economic And Social Effects; Education; Information Theory; Personnel Training; Reviews; Students; Architecture; Engineering; And Constructions; Building Information Model; Bim; Curriculum Designs; Pedagogical Issues; Pedagogical Strategies; Research Designs; Systematic Review; University Curricula; Industry; Management; Building Information Modeling; Training; Curriculum; Review