Skip to content

Hygrothermal Behavior Of Post-retrofit Housing: A Review Of The Impacts Of The Energy Efficiency Upgrade Strategies.

Recart, Carolina; Dossick, Carrie Sturts. (2022). Hygrothermal Behavior Of Post-retrofit Housing: A Review Of The Impacts Of The Energy Efficiency Upgrade Strategies. Energy & Buildings, 262.

View Publication

Abstract

Improving energy efficiency of existing buildings is currently among the most diverse and extensive mitigation opportunities to reduce energy consumption and CO2 emissions worldwide. However, the implementation of energy-saving measures has caused unintended impacts, often correlated with dampness and mold growth connected to poor hygrothermal behavior in residential buildings. The focus of this paper is research on the impacts of energy efficiency measures (EEMs) in regard to the hygrothermal behavior resulting from the interaction of building's envelope, indoor environment, and occupants. The results show that dampness and mold growth are by no means exclusive to neglected houses, since the occurrence of these pathologies actually depends upon a complex set of conditions, including indoor and outdoor conditions, occupancy, maintenance, ventilation, mechanical systems, and quality of the envelope. We found that building envelope post-retrofit may suffer from higher levels of moisture and dampness, higher condensations risks, and a faster structural degradation caused by higher humidity levels. We also found that measuring hygrothermal behavior may play a role in more accurately predicting both overall energy consumption and occupant comfort. While hygrothermal behavior may be problematic, we found evidence that retrofits may moderately improve thermal comfort. (c) 2022 Elsevier B.V. All rights reserved.

Keywords

Energy Consumption; Energy Consumption Of Buildings; Carbon Emissions; Geothermal Ecology; Housing; Thermal Comfort; Building Envelopes; Dampness And Mold; Energy Retrofits; Hygrothermal Behavior; Residential Buildings; Unintended Impacts; Indoor Air-quality; Low-income; Environmental-quality; Assistance-program; Building Envelope; Health; Ventilation; Weatherization; Performance; Mold Growths; Indoor Environments; Moisture Effects; Energy Efficiency; Residential Areas; Mechanical Systems; Moisture Content; Green Buildings; Energy Conservation; Carbon Dioxide; Mold; Emission Measurements; Emissions; Mitigation; Buildings; Occupancy; Retrofitting; Mechanical Properties

Messy Talk in Virtual Teams: Achieving Knowledge Synthesis through Shared Visualizations

Dossick, Carrie Sturts; Anderson, Anne; Azari, Rahman; Iorio, Josh; Neff, Gina; Taylor, John E. (2015). Messy Talk in Virtual Teams: Achieving Knowledge Synthesis through Shared Visualizations. Journal Of Management In Engineering, 31(1).

View Publication

Abstract

Engineering teams collaborating in virtual environments face many technical, social, and cultural challenges. In this paper we focus on distributed teams making joint unanticipated discoveries in virtual environments. We operationalize a definition of messy talk as a process in which teams mutually discover issues, critically engage in clarifying and finding solutions to the discovered issues, exchange their knowledge, and resolve the issue. Can globally distributed teams use messy talk via virtual communication technology? We analyzed the interactions of four distributed student teams collaborating on a complex design and planning project using building information models (BIMs) and the cyber-enabled global research infrastructure for design (CyberGRID), a virtual world specifically developed for collaborative work. Their interactions exhibited all four elements of messy talk, even though resolution was the least common. Virtual worlds support real-time joint problem solving by (1)providing affordances for talk mediated by shared visualizations, (2)supporting team perceptions of building information models that are mutable, and (3)allowing transformations of those models while people were together in real time. Our findings suggest that distributed team collaboration requires technologies that support messy talkand iterative trial and errorfor complex multidimensional problems. (C) 2014 American Society of Civil Engineers.

Keywords

Buildings (structures); Data Visualisation; Design; Grid Computing; Groupware; Knowledge Management; Structural Engineering Computing; Team Working; Virtual Manufacturing; Virtual Reality; Virtual Teams; Knowledge Synthesis; Engineering Teams Collaboration; Virtual Environments; Technical Challenges; Social Challenges; Cultural Challenges; Distributed Teams Making; Messy Talk; Knowledge Exchange; Globally Distributed Teams; Virtual Communication Technology; Distributed Student Teams; Design And Planning Project; Building Information Models; Bim; Cyber-enabled Global Research Infrastructure; Cybergrid; Virtual World; Collaborative Work; Team Perceptions; Iterative Trial And Error; Complex Multidimensional Problems; Visual Representations; Construction; Technology; Implementation; Collaboration; Communication; Teamwork; Digital Techniques; Knowledge-based Systems

Cybergrid: A Virtual Workspace for Architecture, Engineering, and Construction

Taylor, John E.; Alin, Pauli; Anderson, Anne; Çomu, Semra; Dossick, Carrie Sturts; Hartmann, Timo; Iorio, Josh; Mahalingam, Ashwin; Mohammadi, Neda. (2018). Cybergrid: A Virtual Workspace for Architecture, Engineering, and Construction. Transforming Engineering Education: Innovative, Computer-mediated Learning Technologies, 291-321.

View Publication

Abstract

Projects in the architecture, engineering and construction (AEC) industry frequently involve a large number of firms that increasingly span national boundaries. National boundary spanning by AEC firms engaged in complex, interdependent work introduces coordination challenges because stakeholders may not share the same language, culture or work practices. These types of firms have begun to explore the use of technologies that can meaningfully create productive work connections between the distributed participants 47 and help improve work coordination and execution. In this chapter, we describe the CyberGRID (Cyber-enabled Global Research Infrastructure for Design); a virtual workspace designed to support geographically distributed AEC work coordination and execution. The CyberGRID was created as a research tool to both enable and study virtual AEC teamwork. We summarize findings from multiple experiments over the jive year history of CyberGRID research and development. These findings help to improve our understanding of interactional dynamics among virtual teams in complex sociotechnical systems like the CyberGRID. We then discuss the challenges faced in developing the CyberGRID and in achieving widespread adoption of such tools in the industry. We close the chapter with a discussion of future research opportunities to develop improved sociotechnical systems to better support the execution of AEC projects. Our goal with this chapter is to argue that sociotechnical systems like the CyberGRID can fundamentally and positively transform the interactional dynamics of AEC project stakeholders to create more efficient global virtual work practices.

Keywords

Civil Engineering Computing; Construction Industry; Data Visualisation; Groupware; Project Management; Team Working; Virtual Reality; Cybergrid; Virtual Workspace; Construction; Engineering; National Boundaries; National Boundary Spanning; Aec Firms; Complex Work; Interdependent Work; Coordination Challenges; Culture; Productive Work Connections; Chapter; Global Research Infrastructure; Geographically Distributed Aec Work Coordination; Research Tool; Virtual Aec Teamwork; Virtual Teams; Complex Sociotechnical Systems; Future Research Opportunities; Improved Sociotechnical Systems; Aec Projects; Aec Project Stakeholders; Efficient Global Virtual Work Practices

PACPIM: New Decision-Support Model of Optimized Portfolio Analysis for Community-Based Photovoltaic Investment

Shakouri, Mahmoud; Lee, Hyun Woo; Choi, Kunhee. (2015). PACPIM: New Decision-Support Model of Optimized Portfolio Analysis for Community-Based Photovoltaic Investment. Applied Energy, 156, 607 – 617.

View Publication

Abstract

Inherent in large-scale photovoltaic (PV) investments is volatility that stems from a unique set of spatial factors, such as shading, building orientation, and roof slope, which can significantly affect both the level of risk and the return on investment. In order to systematically assess and manage the volatility, this study seeks to create a quantitative decision-support model: Portfolio Analysis for Community-based PV Investment Model (PACPIM). Focusing on residential PV systems, PACPIM determines optimized portfolios by applying the Mean Variance Portfolio theory. The model is intended to play an instrumental role in: (1) maximizing the hourly electricity output of PV systems; (2) minimizing the hourly volatility in electricity output; and (3) optimizing the risk-adjusted performance of community-based PV investment. The application and framework of PACPIM were deployed with an actual residential community consisting of 24 houses and their simulated data utilizing PVWatts (R) for estimating hourly electricity production. Results reveal that the optimized portfolios developed by PACPIM (1) increased annual electricity output of PV systems by 4.6%; (2) reduced the volatility in electricity output by 4.3%; and (3) offered the highest risk-adjusted performance among all possible portfolios based on the Sharpe ratios. This study is expected to effectively assist project owners and investors in systematically assessing their community-based PV projects and in developing optimized investment strategies. (C) 2015 Elsevier Ltd. All rights reserved.

Keywords

Photovoltaic Cells; Rate Of Return; Electricity; Dwellings; Electric Utilities; Community-based Investments; Decision-support Model; Mean–variance Portfolio Theory; Residential Photovoltaic Systems; Solar Energy; Decision Support Systems; Investment; Photovoltaic Power Systems; Large-scale Photovoltaic Investments; Spatial Factors; Shading; Building Orientation; Roof Slope; Return On Investment; Quantitative Decision-support Model; Portfolio Analysis For Community-based Pv Investment Model; Pacpim; Residential Pv Systems; Mean-variance Portfolio Theory; Hourly Electricity Output; Hourly Volatility; Risk-adjusted Performance; Hourly Electricity Production Estimation; Community-based Pv Projects; Optimized Investment Strategies; Romanian National Strategy; Renewable Energy; Public-attitudes; Wind Power; Pv Module; Performance; Implementation; Efficiency; Form; Economic Theory; Electricity Generation; Models; Risk; Shade; Solar Collectors

Normative and Descriptive Models for COBie Implementation: Discrepancies and Limitations

Abdirad, Hamid; Dossick, Carrie S. (2019). Normative and Descriptive Models for COBie Implementation: Discrepancies and Limitations. Engineering, Construction And Architectural Management, 26(8), 1820 – 1836.

View Publication

Abstract

Purpose The purpose of this paper is to inquire into the reasons why Construction Operation Building Information Exchange (COBie) has not become mainstream across the construction industry despite the significant attempts to promote it. Design/methodology/approach This paper framed and compared the normative model of COBie to a descriptive model of COBie. The normative model was based on the assumptions and planned procedures outlined in the COBie documentation. The descriptive model was developed through a case study of COBie implementation, with ethnographic observations, interviews and artifact analysis as the data collection methods and thematic analysis as the data analysis method. Findings The comparative analysis of the normative and descriptive models showed that the underlying normative assumptions of COBie can be challenged in its implementation. In the case study, implementing COBie disrupted the conventional practice of few participating firms as the data requirements and the expected sequences and timelines of tasks were not aligned with the industry norms for exchanging data. Furthermore, the normative model of COBie could not account for the unanticipated variability in the internal routines of firms for submittal production. Practical implications - COBie, as an instruction-based model, may not provide enough flexibility for some firms to adapt to its requirements such that COBie tasks become integrated with their existing workflows. COBie tasks may become additional efforts, and at times, conflict with the industry norms and firms' routines, and therefore, disrupt the efficiency goals. Originality/value This paper provides empirical evidence to clarify why implementing COBie has not been as efficient for all industry players as expected.

Keywords

Construction Industry; Information Dissemination; Information Systems; Cobie; Hand Over; Information And Communication Technologies; Information Exchanges; Operations; Facilities Management; Bim; Construction; Case Study; Information Exchange; Information And Communication Technology (ict) Applications; Project Hand Over

BIM Curriculum Design in Architecture, Engineering, and Construction Education: A Systematic Review

Abdirad, Hamid; Dossick, Carrie S. (2016). BIM Curriculum Design in Architecture, Engineering, and Construction Education: A Systematic Review. Journal Of Information Technology In Construction, 21, 250 – 271.

Abstract

In the past several years, Building Information Modeling (BIM) adoption has grown significantly in the architecture, engineering, and construction (AEC) industry. In response to this trend, the industry and academia realized that BIM education in university curricula is an important requirement for satisfying educational demands of the industry, and a notable body of research has reported strategies AEC programs implemented to incorporate BIM in their curricula. However, no study has comprehensively reviewed and synthesized the research on sfrategies adopted by educators. To bridge this gap in the literature, this paper presents a systematic review of research on BIM curriculum design in AEC education. The authors report on the trends of research on BIM curriculum design (e.g. methods, timelines, and contexts) as well as a synthesis of implemented pedagogical strategies with detailed discussions on their implications and effectiveness across different studies and contexts. These strategies address a variety of important pedagogical issues such as enrolment of students, optional or required BIM use, important competencies and skills, tutoring methods, industry engagement, designing assignments, and assessment methods and criteria. This synthesis shows that designing pedagogical sfrategies for BIM education is complex and challenging, and AEC programs need to make trade-offs between advantages and disadvantages associated with these strategies. The results also highlight the need for more diverse research designs and settings to bridge the gaps identified in BIM curriculum research to date. Finally, the authors present a literature-based framework of BIM curriculum design sfrategies as well as a set of recommendations that can be used BIM educators and researchers as a guide for designing or assessing their BIM curricula in future research.

Keywords

Bridges; Curricula; Economic And Social Effects; Education; Information Theory; Personnel Training; Reviews; Students; Architecture; Engineering; And Constructions; Building Information Model; Bim; Curriculum Designs; Pedagogical Issues; Pedagogical Strategies; Research Designs; Systematic Review; University Curricula; Industry; Management; Building Information Modeling; Training; Curriculum; Review

Restructuration of Architectural Practice in Integrated Project Delivery (IPD): Two Case Studies

Abdirad, Hamid; Dossick, Carrie S. (2019). Restructuration of Architectural Practice in Integrated Project Delivery (IPD): Two Case Studies. Engineering, Construction And Architectural Management, 26(1), 104 – 117.

View Publication

Abstract

Purpose The purpose of this paper is to clarify that while integrated project delivery (IPD) methods can be momenta for restructuring architectural practice, they do not predetermine specific patterns of restructuration for the roles, responsibilities and services of architects. Design/methodology/approach This paper is based on a multiple case study design; two IPD projects were theoretically sampled and studied. The data collection methods included semi-structured interviews and observations. An inductive data analysis approach was applied to frame the phenomena, conduct cross-case comparisons and develop propositions. Findings While IPD implementations set expectations for new structures for practices, it is the project participants' situated decisions that lead to the restructuration of some dimensions of architectural practice. The dimensions in this study included team formation, design leadership and collaboration and architectural services. IPD project participants locally changed and redefined conventional roles, responsibilities and project artifacts (e.g. drawings and models) that concerned design development and coordination. Practical implications - IPD context, by itself, does not predetermine a fixed pattern of change in establishing designers' roles, responsibilities and services because restructuration is highly negotiated amongst the IPD parties and can lead to different responses to this contractual setting. Contracts set expectations for collaborative behavior, but the fulfillment of these expectations is situated and emerging as project participants negotiate to develop practices. Originality/value - While IPD research and guidelines aim to provide recipes for IPD implementation, this study contributes to the body of knowledge by clarifying that IPD is a context in which unprecedented ways of practice restructuration could emerge.

Keywords

Construction Industry; Contracts; Data Analysis; Human Resource Management; Innovation Management; Organisational Aspects; Project Management; Team Working; Architectural Practice; Case Studies; Integrated Project Delivery Methods; Specific Patterns; Responsibilities; Design/methodology; Multiple Case Study Design; Ipd Projects; Data Collection Methods; Observations; Inductive Data Analysis Approach; Cross-case Comparisons; Ipd Implementation; Practices; Design Leadership; Architectural Services; Ipd Project Participants; Conventional Roles; Project Artifacts; Concerned Design Development; Coordination; Practical Implications; Ipd Context; Designers; Ipd Parties; Different Responses; Practice Restructuration; Contractors; Ipd; Architecture; Integration; Design Management; Case Study; Integrated Project Delivery; Integrated Practice; Restructuration

Deconstructing the Construction Industry: A Spatiotemporal Clustering Approach to Profitability Modeling

Choi, Kunhee; Lee, Hyun Woo. (2016). Deconstructing the Construction Industry: A Spatiotemporal Clustering Approach to Profitability Modeling. Journal Of Construction Engineering And Management, 142(10).

View Publication

Abstract

In spite of the strong influence of the construction industry on the national health of the United States' economy, very little research has specifically aimed at evaluating the key performance parameters and trends (KPPT) of the industry. Due to this knowledge gap, concerns have been constantly raised over lack of accurate measures of KPPT. To circumvent these challenges, this study investigates and models the macroeconomic KPPT of the industry through spatiotemporal clustering modeling. This study specifically aims to analyze the industry in 14 of its subsectors and subsequently, by 51 geographic spatial areas at a 15-year temporal scale. KPPT and their interdependence were firstly examined by utilizing the interpolated comprehensive U.S. economic census data. A hierarchical spatiotemporal clustering analysis was then performed to create predictive models that can reliably determine firm's profitability as a function of the key parameters. Lastly, the robustness of the predictive models was tested by a cross-validation technique called the predicted error sum of square. This study yields a notable conclusion that three key performance parameterslabor productivity, gross margin, and labor wageshave steadily improved over the study period from 1992 to 2007. This study also reveals that labor productivity is the most critical factor; the states and subsectors with the highest productivity are the most profitable. This study should be of value to decision-makers when plotting a roadmap for future growth and rendering a strategic business decisions.

Keywords

Construction Industry; Decision Making; Knowledge Management; Labour Resources; Macroeconomics; Organisational Aspects; Productivity; Profitability; Salaries; Statistical Analysis; Strategic Planning; Hierarchical Spatiotemporal Clustering Approach; National Health; Macroeconomic Kppt; Knowledge Gap; Spatiotemporal Clustering Modeling; Interpolated Comprehensive U.s. Economic Census Data; Parameters-labor Productivity; Gross Margin; Labor Wages; Strategic Business Decisions; Deconstructing; Key Performance Parameters And Trends; Firms Profitability; Error Sum Of Square; Labor Productivity; Projects; Firms; Performance; Performance Measurement; Cluster Analysis; Economic Census; Project Planning And Design

Project Risk Factors Facing Construction Management Firms

Park, Kyungmo; Lee, Hyun Woo; Choi, Kunhee; Lee, Seung-hyun. (2019). Project Risk Factors Facing Construction Management Firms. International Journal Of Civil Engineering, 17(3), 305 – 321.

View Publication

Abstract

Very little is known about the project risk factors that affect construction management (CM) firms, which often struggle due to a lack of effective risk management practices. This study investigates the risk factors critical to project execution in CM firms and ranks them using the analytic hierarchy process (AHP) and failure mode and effects analysis (FMEA) methods. Interviews with executives at the top 15 Korean CM firms are carried out to identify major risk factors in the CM sector, and a survey is used to develop priority ranking. We find that payment delays and project delays are the two most critical risk factors affecting CM firms because of (1) lack of communication between headquarters and field offices, (2) shift of responsibility from headquarters to a field office, (3) absence of regular monitoring of project progress, and (4) ex-post management practices. The findings presented in this study should assist CM firms in establishing more robust risk management practices, thereby improving firms' profitability, project performance, and customer satisfaction.

Keywords

Analytic Hierarchy Process; Customer Satisfaction; Factor Analysis; Risk Assessment; Risk Management; Analytic Hierarchy Process (ahp); Construction Management; Construction Management Firms; Failure Mode And Effects Analysis; Korea; Management Practices; Risk Factors; Risk Management Practices; Industry

Time-Cost Performance Effect of Change Orders from Accelerated Contract Provisions

Choi, Kunhee; Lee, Hyun Woo; Bae, Junseo; Bilbo, David. (2016). Time-Cost Performance Effect of Change Orders from Accelerated Contract Provisions. Journal Of Construction Engineering And Management, 142(3).

View Publication

Abstract

Accelerated contract provisions (ACPs) such as cost-plus-time (A+B) and incentives/disincentives (I/D) are increasingly common, yet very little is known about their pure time-cost performance effects on change orders. To fill this large knowledge gap, a two-stage research methodology drawing on 1,372 highway improvement projects completed in California was adopted for this study. The Stage I study investigated the marginal change-order impacts of two ACPs, pure A+B and I/D combined with A+B. How ACP change orders affect projects' time-cost performance was numerically modeled and successfully validated over the Stage II study. The results clearly showed that both ACPs led to more schedule-change and cost-change orders than conventionally contracted projects, whereas I/D combined with A+B performed significantly better than pure A+B in terms of the magnitude of schedule-change orders. This conveys an important recommendation to state transportation agencies (STAs) that A+B be used with an I/D provision. The results and numerical models of this study would help STAs better assess and justify the impact of change orders on the duration and cost of projects, enabling them to more effectively use contingency amounts. Use of the models can also benefit contractors requesting a change order because the models can provide them with advanced knowledge of the probable time-cost growth rates specifically for the pursued ACP. (C) 2015 American Society of Civil Engineers.

Keywords

Construction Industry; Contracts; Costing; Incentive Schemes; Numerical Analysis; Order Processing; Performance Evaluation; Roads; Scheduling; Time Management; Transportation; Projects Time-cost Performance Effect; Cost-change Order; Accelerated Contract Provision; Knowledge Gap; California; Acp; Schedule-change Order; State Transportation Agency; Numerical Model; Sta; Incentive; Highway Improvement Project; Labor Productivity; Construction; Impact; Model; Projects; Change Order; Highway Rehabilitation; Decision Modeling; Regression; Validation; Contracting