Skip to content

Biophilic Photobiological Adaptive Envelopes for Sub-Arctic Buildings: Exploring Impacts of Window Sizes and Shading Panels’ Color, Reflectance, and Configuration

Parsaee, Mojtaba; Demers, Claude M. H.; Potvin, Andre; Lalonde, Jean-Francois; Inanici, Mehlika; Hebert, Marc. (2021). Biophilic Photobiological Adaptive Envelopes for Sub-Arctic Buildings: Exploring Impacts of Window Sizes and Shading Panels’ Color, Reflectance, and Configuration. Solar Energy, 220, 802 – 827.

View Publication

Abstract

Northern building envelopes must provide efficient indoor-outdoor connections based on photobiologicalpsychological needs of occupants for positive relationships with the sub-Arctic nature, particularly daylighting and day/night cycles. Envelope configurations of Northern Canada's buildings have not yet considered such requirements. Potentials of adaptive systems are also still limited. This research develops a fundamental model of adaptive multi-skin envelopes for sub-Arctic buildings based on main biophilic and photobiological indicators which characterize efficient indoor-outdoor connections. Biophilic indicators characterize the state of connections among occupants and outdoors which could stimulate biological-psychological responses. Photobiological indicators determine human-centric lighting adaptation scenarios for hourly lighting qualities and sufficient darkness in relation to local day/night cycles and daylighting. Biophilic performance of the proposed envelope was evaluated through 18 numerical models in terms of impacts of window and shading sizes on occupants' field of views. Photobiological lighting performance was evaluated by experimental methods using 23 physical models at 1:10 scale. Surface characteristics of dynamic shading panels, including color, reflectance, orientation, and inclination, were studied for potential photobiological impacts in terms of melanopic/photopic ratios and color temperatures. Results show that the proposed envelope could (i) offer acceptable direct visual connections with the outdoor nature through efficient window sizes for biophilia, and (ii) modify daylighting qualities to address hourly/seasonal photobiological needs of sub-Arctic occupants. Challenges of the proposed envelope to implement under sub-Arctic climatic conditions are underlined especially in terms of energy issues. The research outcomes help architects and decision-makers to improve occupants' wellbeing and healthy buildings in subArctic climates.

Keywords

Window Shades; Building Envelopes; Reflectance; Color Temperature; Daylighting; Building-integrated Photovoltaic Systems; Daylight; Outdoor Living Spaces; Canada; Adaptive Envelope; Arctic Climate; Biophilic Design; Healthy Building; Photobiological Lighting; Light; Exposure; Stress; Design; Architecture; Sensitivity; Illuminance; Environment; Melatonin; Recovery; Surface Properties; Performance Evaluation; Indicators; Polar Environments; Lighting; Shading; Darkness; Decision Making; Envelopes; Configurations; Buildings; Color; Adaptive Systems; Climatic Conditions; Numerical Models; Mathematical Models; Panels; Night; Climate; Orientation; Arctic Region

Evaluation of Sky Spectra and Sky Models in Daylighting Simulations

Inanici, M; Abboushi, B; Safranek, S. (2022). Evaluation of Sky Spectra and Sky Models in Daylighting Simulations. Lighting Research & Technology, 1.

View Publication

Abstract

Sky models in daylight simulations represent the luminance variation across the sky-dome for different locations, dates, times and weather conditions, but skies are typically modelled as colourless. Recent studies explore techniques for incorporating the spectral content of daylighting in simulations. This paper provides an evaluation of the existing spectral sky models in lighting simulation software. The comparisons are made between the available mathematical sky models and naturally occurring skies that were recorded using high dynamic range photography and spectrophotometric measurements. The results show that recently developed sky models present progress compared to colourless sky models, but further research is needed to accurately simulate daylight spectra. [ABSTRACT FROM AUTHOR]; Copyright of Lighting Research & Technology is the property of Sage Publications, Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

An Investigation of the Daylighting Simulation Techniques and Sky Modeling Practices for Occupant Centric Evaluations

Inanici, Mehlika; Hashemloo, Alireza. (2017). An Investigation of the Daylighting Simulation Techniques and Sky Modeling Practices for Occupant Centric Evaluations. Building And Environment, 113, 220 – 231.

View Publication

Abstract

Occupant centric performance approaches in daylighting studies promote design decisions that support human visual comfort, productivity, and visual preferences, along with more conventional energy efficiency criteria. Simulating per-pixel luminance values and luminance distribution patterns for the entire scene allows us to analyze the occupant centric metrics and performance criteria. However, there are a number of different sky models, complex fenestration models, and simulation techniques that produce either conventional point in time images or annual luminance maps. This paper discusses the similarities and differences between different techniques; and a comparison analyses provides insight about their impact on occupant centric lighting measures. The comparisons for sky modeling include the conventional CIE skies (Clear, Intermediate, and Overcast), measurement based CIE models, Perez all-weather skies, and high dynamic range image based skies. The comparison of simulation techniques include point in time simulations, image based lighting simulations, and annual luminance simulations (threephase and five-phase methods). Results demonstrate that measurement based sky models match real world conditions with reasonable proximity, and generic CIE skies consistently underestimate the indoor lighting conditions. Annual simulation methods provide a large database of temporal luminance variations, where individual instances are comparable to point in time simulations. Long term luminance simulations provide opportunities to evaluate the percentage of the year that a given luminance based criteria is met or violated. (C)2016 Elsevier Ltd. All rights reserved.

Keywords

Complex Fenestration Systems; Scattering Distribution-functions; Discomfort Glare; Visual Comfort; Daylit Spaces; Validation; Radiance; Performance; Offices; Design; Sky Models; Daylight Simulations; Point In Time Simulations; Image Based Lighting; Annual Lighting Simulations; Annual Luminance Maps

Deep Learning in Design Workflows: The Elusive Design Pixel

Mahankali, Ranjeeth; Johnson, Brian R.; Anderson, Alex T. (2018). Deep Learning in Design Workflows: The Elusive Design Pixel. International Journal Of Architectural Computing, 16(4), 328 – 340.

View Publication

Abstract

The recent wave of developments and research in the field of deep learning and artificial intelligence is causing the border between the intuitive and deterministic domains to be redrawn, especially in computer vision and natural language processing. As designers frequently invoke vision and language in the context of design, this article takes a step back to ask if deep learning's capabilities might be applied to design workflows, especially in architecture. In addition to addressing this general question, the article discusses one of several prototypes, BIMToVec, developed to examine the use of deep learning in design. It employs techniques like those used in natural language processing to interpret building information models. The article also proposes a homogeneous data format, provisionally called a design pixel, which can store design information as spatial-semantic maps. This would make designers' intuitive thoughts more accessible to deep learning algorithms while also allowing designers to communicate abstractly with design software.

Keywords

Associative Logic; Creative Processes; Deep Learning; Embedding Vectors; Bimtovec; Homogeneous Design Data Format; Design Pixel; Idea Persistence

Deep Neural Network Approach for Annual Luminance Simulations

Liu, Yue; Colburn, Alex; Inanici, Mehlika. (2020). Deep Neural Network Approach for Annual Luminance Simulations. Journal Of Building Performance Simulation, 13(5), 532 – 554.

View Publication

Abstract

Annual luminance maps provide meaningful evaluations for occupants' visual comfort and perception. This paper presents a novel data-driven approach for predicting annual luminance maps from a limited number of point-in-time high-dynamic-range imagery by utilizing a deep neural network. A sensitivity analysis is performed to develop guidelines for determining the minimum and optimum data collection periods for generating accurate maps. The proposed model can faithfully predict high-quality annual panoramic luminance maps from one of the three options within 30 min training time: (i) point-in-time luminance imagery spanning 5% of the year, when evenly distributed during daylight hours, (ii) one-month hourly imagery generated during daylight hours around the equinoxes; or (iii) 9 days of hourly data collected around the spring equinox, summer and winter solstices (2.5% of the year) all suffice to predict the luminance maps for the rest of the year. The DNN predicted high-quality panoramas are validated against Radiance renderings.

Keywords

Scattering Distribution-functions; Daylight Performance; Glare; Model; Prediction; Daylighting Simulation; Luminance Maps; Machine Learning; Neural Networks; Hdr Imagery; Panoramic View

Human-Centric Lighting Performance of Shading Panels in Architecture: A Benchmarking Study with Lab Scale Physical Models Under Real Skies

Parsaee, Mojtaba; Demers, Claude M. H.; Lalonde, Jean-francois; Potvin, Andre; Inanici, Mehlika; Hebert, Marc. (2020). Human-Centric Lighting Performance of Shading Panels in Architecture: A Benchmarking Study with Lab Scale Physical Models Under Real Skies. Solar Energy, 204, 354 – 368.

View Publication

Abstract

This study investigates shading panels' (SPs) impacts on daylighting features in a lab scale model in terms of parameters representing potential human eyes' biological responses identified as image forming (IF) and non-image forming (NIF). IF responses enable vision and NIF responses regulate internal body clocks known as circadian clocks. Human-centric lighting evaluates photopic units, representing IF responses, and melanopic units representing NIF responses, combined with correlated color temperature (CCT) of light for potential biological effects. SPs' impacts on such parameters of daylighting have not yet been studied. Previous research mostly studied panels' impacts on visual comfort and glare related to IF responses. This research explores the impact of SPs' color, reflectance, orientation, and openness on photopic and melanopic units and CCT of daylighting inside a 1:50 physical scale model of a space. Approximately 40 prototypes of SPs were evaluated. An experimental setup was designed under outdoor daylighting conditions to capture high dynamic range (HDR) images inside the model. HDR images were post processed to calculate and render the distribution of photopic and melanopic units, melanopic/photopic (M/P) ratios and CCTs in the captured viewpoint of the model. Results reveal the behavior of SPs' color, reflectance, orientation, and openness in modifying daylighting parameters related to biological responses. Bluish panels, in particular, increase daylighting melanopic units and CCTs whereas reddish panels increase photopic units and reduce CCTs. The research results were discussed to provide an outline for future developments of panels to adapt daylighting to occupants' IF and NIF responses.

Keywords

Models & Modelmaking; Shades & Shadows; Daylighting; Color Temperature; Benchmarking (management); Ecological Houses; Eye Tracking; Circadian Rhythms; Adaptive Design; Healthy Lighting; High Performance Façade; Photobiology; Responsive Building; Design; Sensitivity; Illuminance; Systems; Spaces; Impact; Glare; High Performance Facade; Reflectance; Scale Models; Biological Effects; Human Performance; Prototypes; Parameter Modification; Lighting; Shading; Eye (anatomy); Color; Parameter Identification; Light Effects; Panels; Mathematical Models; Images; Biological Clocks; Orientation

Tomás Méndez Echenagucia

Tomás Méndez Echenagucia is an Associate Professor at the University of Washington’s department of Architecture. His research is focused on the use of simulation, computational geometry and optimization algorithms to make building components more sustainable. He holds a double degree in Architecture from the Universidad Central de Venezuela and the Politecnico di Torino, as well as a PhD in Architecture and Building Design also from the Politecnico di Torino. He has practiced as an architect and consultant in Europe and South America. His work includes several research pavilions and prototypes, including the “Armadillo Vault” for the Venice Biennale in 2016 and the ETH Pavilion in New York City in 2015. He completed a five year postdoctoral researcher position at the Block Research Group in the Swiss Federal Institute of Technology ETH Zürich, where he was a project lead in the HiLo research unit. Tomás is a co-developer of the COMPAS framework, an ecosystem of modeling, design and simulation tools, ranging from Finite Element Analysis to geometric acoustics.

Urban@UW helps BE labs collaborate

The Urban@UW initiative brings together labs that study urban issues from across the University of Washington. Urban@UW works with scholars, policymakers, and community stakeholders in order to strengthen the connection between research and solutions to urban issues through cross-disciplinary and cross-sector collaborative research. Key functions of Urban@UW include amplifying public awareness of ongoing projects, connecting researchers with outside constituencies, providing staff and administrative support services, and providing pilot funding and fundraising assistance. Multiple BE labs are involved, including the Northwest…

Tyler Sprague

Tyler S. Sprague PE., Ph.D. is an Associate Professor in the Department of Architecture, with an Adjunct appointment in the Department of Civil and Environmental Engineering. He holds engineering degrees from the University of California, Berkeley and the University of Washington (UW) and worked professionally as a structural engineer before completing a Ph.D. in architectural history in the College of Built Environments at the UW.

Dr. Sprague’s research investigates the intersection of architecture and structural engineering, in both post-war modern architecture and the present. He has written on the rise of concrete skyscrapers in the Pacific Northwest, the engineering of the 1962 Seattle World’s Fair, and other topics. In 2019, he published Sculpture on a Grand Scale: Jack Christiansen’s Thin Shell Modernism (italicize, and link: https://uwapress.uw.edu/book/9780295745619/sculpture-on-a-grand-scale/) with the University of Washington Press. This text explores Christiansen’s prolific work in thin-shell concrete which culminated in the largest free-standing concrete dome in the world: the Seattle Kingdome.

He currently serves on the board of docomomo wewa (the regional chapter of the international preservation advocacy group), and the Construction History Society of America.

Chris Meek

Christopher Meek is Professor of Architecture at the University of Washington and Director of the Center for Integrated Design at the University’s College of Built Environments. Professor Meek’s areas of research include building energy performance for new construction and retrofits, daylighting, visual comfort, electric lighting, and climate responsive design. His work bridges practice, research, and education with collaboration between practitioners, faculty, and students. Under his leadership, the Center advances its mission through interconnected research, technical assistance, and educational programs that create impact in three primary areas: (1) influential new construction and renovation projects that achieve exceptional energy performance targets and serve as a model for future buildings; (2) the development and advancement of tools, methods, and technologies to accelerate energy efficient buildings through peer-reviewed publications and competitive grant awards, and; (3) the delivery of educational programs and experiences that form the next generation of leaders in the building industry.

Over the past decade, Professor Meek has consulted on over 20 million square feet of commercial and institutional buildings including working, learning, and healing environments including the net-zero energy Bullitt Center in Seattle. His research has been funded by the Northwest Energy Efficiency Alliance, the National Science Foundation, the US Department of Energy, the Illuminating Engineering Society, the Bullitt Foundation, and the American Institute of Architects. Professor Meek teaches graduate and undergraduate level courses on building design and technology at the UW Department of Architecture.

Professor Meek is co-author of Daylighting Design in the Pacific Northwest and Daylighting and Integrated Lighting Design.  He was elevated to Fellowship in the American Institute of Architects in 2020.