Skip to content

Integration of Urban Science and Urban Climate Adaptation Research: Opportunities to Advance Climate Action

Lobo, J., Aggarwal, R. M., Alberti, M., Allen-Dumas, M., Bettencourt, L. M. A., Boone, C., Brelsford, C., Broto, V. C., Eakin, H., Bagchi-Sen, S., Meerow, S., D’Cruz, C., Revi, A., Roberts, D. C., Smith, M. E., York, A., Lin, T., Bai, X., Solecki, W., … Gauthier, N. (2023). Integration of urban science and urban climate adaptation research: opportunities to advance climate action. Npj Urban Sustainability, 3(1), 32–39. https://doi.org/10.1038/s42949-023-00113-0

View Publication

Abstract

There is a growing recognition that responding to climate change necessitates urban adaptation. We sketch a transdisciplinary research effort, arguing that actionable research on urban adaptation needs to recognize the nature of cities as social networks embedded in physical space. Given the pace, scale and socioeconomic outcomes of urbanization in the Global South, the specificities and history of its cities must be central to the study of how well-known agglomeration effects can facilitate adaptation. The proposed effort calls for the co-creation of knowledge involving scientists and stakeholders, especially those historically excluded from the design and implementation of urban development policies.

Say Where You Sample: Increasing Site Selection Transparency in Urban Ecology

Dyson, Karen; Dawwas, Emad; Poulton Kamakura, Renata; Alberti, Marina; Fuentes, Tracy L. (2023). Say Where You Sample: Increasing Site Selection Transparency in Urban Ecology. Ecosphere, 14(3).

View Publication

Abstract

Urban ecological studies have the potential to expand our understanding of socioecological systems beyond that of an individual city or region. Cross-comparative empirical work and synthesis are imperative to develop a general urban ecological theory. This can be achieved only if studies are replicable and generalizable. Transparency in methods reporting facilitates generalizability and replicability by documenting the decisions scientists make during the various steps of research design; this is particularly true for sampling design and selection because of their impact on both internal and external validity and the potential to unintentionally introduce bias. Three interdependent aspects of sample design are study sample selection (e.g., specific organisms, soils, or water), sample specification (measurement of specific variable of interest), and site selection (locations sampled). Of these, documentation of site selection—the where component of sample design—is underrepresented in the urban ecology literature. Using a stratified random sample of 158 papers from 12 major urban ecology journals, we investigated how researchers selected study sites in urban ecosystems and evaluated whether their site selection methods were transparent. We extracted data from these papers using a 50-question, theory-based questionnaire and a multiple-reviewer approach. Our sample represented almost 45 years of urban ecology research across 40 different countries. We found that more than 80% of the papers we read were not transparent in their site selection methodology. We do not believe site selection methods are replicable for 70% of the papers read. Key weaknesses include incomplete descriptions of populations and sampling frames, urban gradients, sample selection methods, and property access. Low transparency in reporting the where methodology limits urban ecologists' ability to assess the internal and external validity of studies' findings and to replicate published studies; it also limits the generalizability of existing studies. The challenges of low transparency are particularly relevant in urban ecology, a field where standard protocols for site selection and delineation are still being developed. These limitations interfere with the fields' ability to build theory and inform policy. We conclude by offering a set of recommendations to increase transparency, replicability, and generalizability.

Keywords

external validity, field ecology, generalizability, internal validity, replication, reproducibility, sampling design, site selection, theory building, transparency

A Global Horizon Scan for Urban Evolutionary Ecology

Verrelli, Brian C.; Alberti, Marina; Des Roches, Simone; Harris, Nyeema C.; Hendry, Andrew P.; Johnson, Marc T. J.; Savage, Amy M.; Charmantier, Anne; Gotanda, Kiyoko M.; Govaert, Lynn; Miles, Lindsay S.; Rivkin, L. Ruth; Winchell, Kristin M.; Brans, Kristien I.; Correa, Cristian; Diamond, Sarah E.; Fitzhugh, Ben; Grimm, Nancy B.; Hughes, Sara; Marzluff, John M.; Munshi-south, Jason; Rojas, Carolina; Santangelo, James S.; Schell, Christopher J.; Schweitzer, Jennifer A.; Szulkin, Marta; Urban, Mark C.; Zhou, Yuyu; Ziter, Carly. (2022). A Global Horizon Scan for Urban Evolutionary Ecology. Trends In Ecology & Evolution, 37(11), 1006-1019.

View Publication

Abstract

Research on the evolutionary ecology of urban areas reveals how human-induced evolutionary changes affect biodiversity and essential ecosystem services. In a rapidly urbanizing world imposing many selective pressures, a time-sensitive goal is to identify the emergent issues and research priorities that affect the ecology and evolution of species within cities. Here, we report the results of a horizon scan of research questions in urban evolutionary ecology submitted by 100 interdisciplinary scholars. We identified 30 top questions organized into six themes that highlight priorities for future research. These research questions will require methodological advances and interdisciplinary collaborations, with continued revision as the field of urban evolutionary ecology expands with the rapid growth of cities.

Keywords

Urban Ecology; Sustainability; Cities & Towns; Ecosystem Dynamics; Urban Growth; Ecosystem Services; Urban Research; Climate Change; Sociopolitical; Urban Evolution; Urbanization; Human Health; Biodiversity; Adaptation; Challenges; Dynamics; Management; Invasion; Science

Back to the Future: Reintegrating Biology to Understand How Past Eco-evolutionary Change Can Predict Future Outcomes

Thompson, Cynthia L.; Alberti, Marina; Barve, Sahas; Battistuzzi, Fabia U.; Drake, Jeana L.; Goncalves, Guilherme Casas; Govaert, Lynn; Partridge, Charlyn; Yang, Ya. (2022). Back to the Future: Reintegrating Biology to Understand How Past Eco-evolutionary Change Can Predict Future Outcomes. Integrative And Comparative Biology, 61(6), 2218-2232.

View Publication

Abstract

During the last few decades, biologists have made remarkable progress in understanding the fundamental processes that shape life. But despite the unprecedented level of knowledge now available, large gaps still remain in our understanding of the complex interplay of eco-evolutionary mechanisms across scales of life. Rapidly changing environments on Earth provide a pressing need to understand the potential implications of eco-evolutionary dynamics, which can be achieved by improving existing eco-evolutionary models and fostering convergence among the sub-fields of biology. We propose a new, data-driven approach that harnesses our knowledge of the functioning of biological systems to expand current conceptual frameworks and develop corresponding models that can more accurately represent and predict future eco-evolutionary outcomes. We suggest a roadmap toward achieving this goal. This long-term vision will move biology in a direction that can wield these predictive models for scientific applications that benefit humanity and increase the resilience of natural biological systems. We identify short, medium, and long-term key objectives to connect our current state of knowledge to this long-term vision, iteratively progressing across three stages: (1) utilizing knowledge of biological systems to better inform eco-evolutionary models, (2) generating models with more accurate predictions, and (3) applying predictive models to benefit the biosphere. Within each stage, we outline avenues of investigation and scientific applications related to the timescales over which evolution occurs, the parameter space of eco-evolutionary processes, and the dynamic interactions between these mechanisms. The ability to accurately model, monitor, and anticipate eco-evolutionary changes would be transformational to humanity's interaction with the global environment, providing novel tools to benefit human health, protect the natural world, and manage our planet's biosphere.

Keywords

Rapid Evolution; Ecological Interactions; Niche Construction; Climate-change; Phenotype; Community; Selection; Fitness; Consequences; Variability

Small-Scale and Extensive Hydrogeomorphic Modification and Water Redistribution in a Desert City and Implications for Regional Nitrogen Removal

Larson, Elisabeth K.; Grimm, Nancy B. (2012). Small-Scale and Extensive Hydrogeomorphic Modification and Water Redistribution in a Desert City and Implications for Regional Nitrogen Removal. Urban Ecosystems, 15(1), 71 – 85.

View Publication

Abstract

There are numerous examples of small-scale hydrogeomorphic manipulations within urban ecosystems. These modifications are motivated both by a need to handle storm drainage and by a human desire for aquatic ecosystems as places for recreation and aesthetics. In the Phoenix Arizona metropolitan area, two examples of these local modifications are artificial lakes and stormwater retention basins. Although lakes are not a natural feature of Sonoran Desert ecosystems, numerous artificial lakes are evident in the region. Retention basins are a common landscaping practice for preventing damage from rare but potentially large storm events. Here we attempt to quantify the heretofore unknown number and extent of these designed aquatic ecosystems and consider their potential impact on hydrologic landscape connectivity and regional nitrogen (N) removal. For lakes, we found that official GIS layers from local and state agencies had significant misclassifications and omissions. We used two published GIS datasets and state impoundment-permit information to determine the number, areal extent, and water source for artificial lakes. We discovered that there are 908-1,390 lakes in the Phoenix area, with the number varying according to level of aggregation. There are no existing GIS data on retention basins, so we employed drywell-permit data to estimate that there may be 10,000 retention basins in the region. Basic data on N stocks in these ecosystems are discussed within the context of the regional N budget. Accurate data on the extent and distribution of these designed ecosystems will be vital for water-resources planning and stormwater management.

Keywords

Urban; Urbanization; Retention; Phoenix

Integrating Solutions to Adapt Cities for Climate Change

Lin, Brenda B.; Ossola, Alessandro; Alberti, Marina; Andersson, Erik; Bai, Xuemei; Dobbs, Cynnamon; Elmqvist, Thomas; Evans, Karl L.; Frantzeskaki, Niki; Fuller, Richard A.; Gaston, Kevin J.; Haase, Dagmar; Jim, Chi Yung; Konijnendijk, Cecil; Nagendra, Harini; Niemela, Jari; Mcphearson, Timon; Moomaw, William R.; Parnell, Susan; Pataki, Diane; Ripple, William J.; Tan, Puay Yok. (2021). Integrating Solutions to Adapt Cities for Climate Change. Lancet Planetary Health, 5(7), E479 – E486.

View Publication

Abstract

Record climate extremes are reducing urban liveability, compounding inequality, and threatening infrastructure. Adaptation measures that integrate technological, nature-based, and social solutions can provide multiple co-benefits to address complex socioecological issues in cities while increasing resilience to potential impacts. However, there remain many challenges to developing and implementing integrated solutions. In this Viewpoint, we consider the value of integrating across the three solution sets, the challenges and potential enablers for integrating solution sets, and present examples of challenges and adopted solutions in three cities with different urban contexts and climates (Freiburg, Germany; Durban, South Africa; and Singapore). We conclude with a discussion of research directions and provide a road map to identify the actions that enable successful implementation of integrated climate solutions. We highlight the need for more systematic research that targets enabling environments for integration; achieving integrated solutions in different contexts to avoid maladaptation; simultaneously improving liveability, sustainability, and equality; and replicating via transfer and scale-up of local solutions. Cities in systematically disadvantaged countries (sometimes referred to as the Global South) are central to future urban development and must be prioritised. Helping decision makers and communities understand the potential opportunities associated with integrated solutions for climate change will encourage urgent and deliberate strides towards adapting cities to the dynamic climate reality.

Keywords

Urban; Resilience; Energy; Water; Transformations; Sustainability; Opportunities; Challenges; Mitigation; Knowledge

Eco-Evolutionary Dynamics in an Urbanizing Planet

Alberti, Marina. (2015). Eco-Evolutionary Dynamics in an Urbanizing Planet. Trends In Ecology & Evolution, 30(2), 114 – 126.

View Publication

Abstract

A great challenge for ecology in the coming decades is to understand the role humans play in eco-evolutionary dynamics. If, as emerging evidence shows, rapid evolutionary change affects ecosystem functioning and stability, current rapid environmental change and its evolutionary effects might have significant implications for ecological and human wellbeing on a relatively short time scale. Humans are major selective agents with potential for unprecedented evolutionary consequences for Earth's ecosystems, especially as cities expand rapidly. In this review, I identify emerging hypotheses on how urbanization drives eco-evolutionary dynamics. Studying how human-driven micro-evolutionary changes interact with ecological processes offers us the chance to advance our understanding of eco-evolutionary feedbacks and will provide new insights for maintaining biodiversity and ecosystem function over the long term.

Keywords

Biological Evolution; Urbanization; Climate Change; Ecosystems; Well-being; Co-evolution; Eco-evolutionary Dynamics; Ecosystem Function; Urban Ecosystems; Ecological Consequences; Phenotypic Plasticity; Rapid Evolution; Regime Shifts; Elevated Co2; Biodiversity; Selection; Community; Patterns

The Benefits and Limits of Urban Tree Planting for Environmental and Human Health

Pataki, Diane E.; Alberti, Marina; Cadenasso, Mary L.; Felson, Alexander J.; McDonnell, Mark J.; Pincetl, Stephanie; Pouyat, Richard V.; Setala, Heikki; Whitlow, Thomas H. (2021). The Benefits and Limits of Urban Tree Planting for Environmental and Human Health. Frontiers In Ecology And Evolution, 9.

View Publication

Abstract

Many of the world's major cities have implemented tree planting programs based on assumed environmental and social benefits of urban forests. Recent studies have increasingly tested these assumptions and provide empirical evidence for the contributions of tree planting programs, as well as their feasibility and limits, for solving or mitigating urban environmental and social issues. We propose that current evidence supports local cooling, stormwater absorption, and health benefits of urban trees for local residents. However, the potential for urban trees to appreciably mitigate greenhouse gas emissions and air pollution over a wide array of sites and environmental conditions is limited. Consequently, urban trees appear to be more promising for climate and pollution adaptation strategies than mitigation strategies. In large part, this is due to space constraints limiting the extent of urban tree canopies relative to the current magnitude of emissions. The most promising environmental and health impacts of urban trees are those that can be realized with well-stewarded tree planting and localized design interventions at site to municipal scales. Tree planting at these scales has documented benefits on local climate and health, which can be maximized through targeted site design followed by monitoring, adaptive management, and studies of long-term eco-evolutionary dynamics.

Keywords

Outdoor Thermal Comfort; Improved Public-health; Carbon Storage; Ecosystem Services; Air-quality; Rainfall Interception; Vegetation; Cover; Design; Impact; Urban Ecology; Forestry; Sustainability; Policy; Climate Mitigation; Climate Adaptation; Ecosystem Disservices

Ecological Design For Urban Waterfronts

Dyson, Karen; Yocom, Ken. (2015). Ecological Design For Urban Waterfronts. Urban Ecosystems, 18(1), 189 – 208.

View Publication

Abstract

Urban waterfronts are rarely designed to support biodiversity and other ecosystem services, yet have the potential to provide these services. New approaches that integrate ecological research into the design of docks and seawalls provide opportunities to mitigate the environmental impacts of urbanization and recover ecosystem function in urban waterfronts. A review of current examples of ecological design in temperate cities informs suggestions for future action. Conventional infrastructures have significant and diverse impacts on aquatic ecosystems. The impacts of conventional infrastructure are reduced where ecological designs have been implemented, particularly by projects adding microhabitat, creating more shallow water habitat, and reconstructing missing or altered rocky benthic habitats. Opportunities for future research include expanding current research into additional ecosystems, examining ecological processes and emergent properties to better address ecosystem function in ecological design, and addressing the impact of and best practices for continuing maintenance. Planned ecological infrastructure to replace aging and obsolete structures will benefit from design feedback derived from carefully executed in situ pilot studies.

Keywords

Coastal Defense Structures; Fixed Artificial Habitats; Marine Habitats; Intertidal Seawalls; Benthic Communities; Reconciliation Ecology; Subtidal Epibiota; Rocky Shores; Reef; Biodiversity; Ecological Design; Seawalls; Habitat; Waterfront; Urban Infrastructure; Aquatic Ecology

Triggering a Climate Change Dominated Anthropocene: Is it Common Among Exocivilizations

Savitch, Ethan; Frank, Adam; Carroll-Nellenback, Jonathan; Haqq-Misra, Jacob; Kleidon, Axel; Alberti, Marina. (2021). Triggering a Climate Change Dominated Anthropocene: Is it Common Among Exocivilizations? Astronomical Journal, 162(5).

View Publication

Abstract

We seek to model the coupled evolution of a civilization and its host planet through the era when energy harvesting by the civilization drives the planet into new and adverse climate states. In this way, we ask if triggering Anthropocenes of the kind humanity is experiencing might be a generic feature of planet-civilization evolution. This question has direct consequences for both the study of astrobiology and the sustainability of human civilization. Furthermore, if Anthropocenes prove fatal for some civilizations then they can be considered as one form of a Great Filter and are therefore relevant to discussions of the Fermi Paradox. In this study, we focus on the effects of energy harvesting via combustion and vary the planet's initial chemistry and orbital radius. We find that in this context, the most influential parameter dictating a civilization's fate is their host planet's climate sensitivity, which quantifies how global temperatures change as CO2 is added to the atmosphere. Furthermore, this is in itself a function of the planet's atmospheric CO2 level, so planets with low levels of CO2 will have high climate sensitivities and high probabilities of triggering climate change. Using simulations of the coupled nonlinear model combined with semi-analytic treatments, we find that most planets in our initial parameter space experience diminished growth due to climate effects, an event we call a climate-dominated Anthropocene.

Keywords

Habitable Planets; Complex Life; Evolution; Earth