Skip to content

The Relationship between Objectively Measured Walking and Risk of Pedestrian–Motor Vehicle Collision

Quistberg, D. Alex; Howard, Eric J.; Hurvitz, Philip M.; Moudon, Anne V.; Ebel, Beth E.; Rivara, Frederick P.; Saelens, Brian E. (2017). The Relationship between Objectively Measured Walking and Risk of Pedestrian–Motor Vehicle Collision. American Journal Of Epidemiology, 185(9), 810 – 821.

View Publication

Abstract

Safe urban walking environments may improve health by encouraging physical activity, but the relationship between an individual's location and walking pattern and the risk of pedestrian-motor vehicle collision is unknown. We examined associations between individuals' walking bouts and walking risk, measured as mean exposure to the risk of pedestrian-vehicle collision. Walking bouts were ascertained through integrated accelerometry and global positioning system data and from individual travel-diary data obtained from adults in the Travel Assessment and Community Study (King County, Washington) in 2008-2009. Walking patterns were superimposed onto maps of the historical probabilities of pedestrian-vehicle collisions for intersections and midblock segments within Seattle, Washington. Mean risk of pedestrian-vehicle collision in specific walking locations was assessed according to walking exposure (duration, distance, and intensity) and participant demographic characteristics in linear mixed models. Participants typically walked in areas with low pedestrian collision risk when walking for recreation, walking at a faster pace, or taking longer-duration walks. Mean daily walking duration and distance were not associated with collision risk. Males walked in areas with higher collision risk compared with females, while vehicle owners, residents of single-family homes, and parents of young children walked in areas with lower collision risk. These findings may suggest that pedestrians moderate collision risk by using lower-risk routes.

Keywords

Traffic Accidents; Confidence Intervals; Geographic Information Systems; Health Promotion; Maps; Research Funding; Walking; Accelerometry; Physical Activity; Data Analysis Software; Diary (literary Form); Descriptive Statistics; Risk Factors; Washington (state); Accidents; Environment Design; Global Positioning Systems; Pedestrians; Risk Assessment; Traffic; Physical-activity; Built Environment; Traffic Safety; Accident Risk; Injury Rates; Route-choice; Exposure; Gps; Travel; Accidents, Traffic

Framing the Question: Is Shrinking Good or Bad?

Moudon, Anne Vernez. (2019). Framing the Question: Is Shrinking Good or Bad? Journal Of Urban Design, 24(1), 66 – 68.

View Publication

Keywords

Urban Planning; Unemployment; Cost Of Living; Balance Of Trade; Medical Care; Economic Development; Demography; Decision Making; Framing

Association of Neighborhood Physical Activity Opportunities with Incident Cardiovascular Disease in the Cardiovascular Health Study

Garg, Parveen K.; Platt, Jonathan M.; Hirsch, Jana A.; Hurvitz, Philip; Rundle, Andrew; Biggs, Mary Lou; Psaty, Bruce M.; Moore, Kari; Lovasi, Gina S. (2021). Association of Neighborhood Physical Activity Opportunities with Incident Cardiovascular Disease in the Cardiovascular Health Study. Health & Place, 70.

View Publication

Abstract

We determined associations of cumulative exposures to neighborhood physical activity opportunities with risk of incident cardiovascular disease (CVD). We included 3595 participants from the Cardiovascular Health Study recruited between 1989 and 1993 (mean age = 73; 60% women; 11% black). Neighborhood environment measures were calculated using Geographic Information Systems (GIS) and annual information from the National Establishment Time Series database, including the density of (1) walking destinations and (2) physical activity/ recreational facilities in a 1- and 5-km radius around the respondent's home. Incident CVD was defined as the development of myocardial infarction, stroke, or cardiovascular death and associations with time to incident CVD were estimated using Cox proportional hazards models. A total of 1986 incident CVD cases occurred over a median follow-up of 11.2 years. After adjusting for baseline and time-varying individual and neighborhood-level confounding, a one standard deviation increase in walking destinations and physical activity/recreational facilities within 5 km of home was associated with a respective 7% (95% confidence interval (CI) = 0.87-0.99) and 12% (95% CI = 0.73-1.0) decreased risk of incident CVD. No significant associations were noted within a 1-km radius. Efforts to improve the availability of physical activity resources in neighborhoods may be an important strategy for lowering CVD.

Keywords

Cardiovascular Diseases; Physical Activity; Proportional Hazards Models; Geographic Information Systems; Recreation Centers; Built Environment; Cardiovascular Disease; Coronary-heart-disease; Census Tract Data; Older-adults; Longitudinal Associations; Risk; Resources; Time; Atherosclerosis; Survival

Urban Form Lab

The Urban Form Lab (UFL) research aims to affect policy and to support approaches to the design and planning of more livable environments. The UFL specializes in geospatial analyses of the built environment using multiple micro-scale data in Geographic Information Systems (GIS). Current research includes the development of novel GIS routines for performing spatial inventories and analyses of the built environment, and of spatially explicit sampling techniques. Projects address such topics as land monitoring, neighborhood and street design, active transportation, non-motorized transportation safety, physical activity, and access to food environments. 

Research at the UFL has been supported by the U.S. and Washington State Departments of Transportation, the Centers for Disease Control and Prevention, the Robert Wood Johnson Foundation, the National Institutes of Health, and local agencies.

The Urban Form Lab is directed by Anne Vernez Moudon, Dr es Sc, a leading researcher and educator in quantifying the properties of the built environment as related to health and transportation behaviors. Philip M. Hurvitz, PhD, a veteran of geographic information science and data processing, leads data management and GIS work.

Urban@UW helps BE labs collaborate

The Urban@UW initiative brings together labs that study urban issues from across the University of Washington. Urban@UW works with scholars, policymakers, and community stakeholders in order to strengthen the connection between research and solutions to urban issues through cross-disciplinary and cross-sector collaborative research. Key functions of Urban@UW include amplifying public awareness of ongoing projects, connecting researchers with outside constituencies, providing staff and administrative support services, and providing pilot funding and fundraising assistance. Multiple BE labs are involved, including the Northwest…

New UW Data Collaborative connects BE researchers with restricted data

The University of Washington Data Collaborative (UWDC) is now offering services to researchers across campus, including BE researchers Gregg Colburn at the Runstad Department of Real Estate and the Urban Form Lab. Housed at the Center for Studies in Demography & Ecology, UWDC provides infrastructure to access restricted data in a secure and sophisticated computing environment. Data sets available to researchers cover health records, polling data, business and consumer data, and real estate data. Researchers interested in accessing these data…

Anne Vernez-Moudon

Anne Vernez Moudon is Professor Emerita of Architecture, Landscape Architecture, and Urban Design and Planning at the University of Washington, Seattle. She is President of the International Seminar on Urban Morphology (ISUF), an international and interdisciplinary organization of scholars and practitioners; a Faculty Associate at the Lincoln Institute of Land Policy, in Cambridge, MA; a Fellow of the Urban Land Institute in Washington, D.C.; and a National Advisor to the Robert Wood Johnson Foundation program on Active Living Policy and Environmental Studies.

Dr. Moudon holds a B.Arch. (Honors) from the University of California, Berkeley, and a Doctor ès Science from the Ecole Polytechnique Fédérale of Lausanne, Switzerland. Her work focuses on urban form analysis, land monitoring, neighborhood and street design, and non-motorized transportation. Her current research is supported by the U.S. and Washington State departments of Transportation, the Puget Sound Regional Council, the Federal Highway Administration, and the Centers for Disease Control and Prevention.

Her published works include Built for Change: Neighborhood Architecture in San Francisco (MIT Press 1986), Public Streets for Public Use (Columbia University Press 1991), and Monitoring Land Supply with Geographic Information Systems (with M. Hubner, John Wiley & Sons, 2000). She also published several monographs, such as Master-Planned Communities: Shaping Exurbs in the 1990 ( with B. Wiseman and K.J. Kim, distributed by the APA Bookstore, 1992) and Urban Design: Reshaping Our Cities (with W. Attoe, University of Washington, College of Architecture and Urban Planning, 1995).

Dr. Moudon has been an active participant in The Mayors’ Institute on City Design since 1992. She has consulted for many communities nationally and internationally to develop urban design guidelines for new construction which respect the character of the existing landscape and built environment and which support non-motorized transportation. She has worked with planning officials, design professionals, and neighborhood groups in the Puget Sound as well as in San Francisco, CA, Toronto and Montreal, Canada, Stockholm, Sweden, among others. She taught courses and conducted seminars in urban design, planning, and housing in Japan, Korea, China, Mexico, Brazil, Venezuela, Colombia, France, the United Kingdom, and Switzerland.

Philip Hurvitz

Phil Hurvitz is a research scientist with a primary appointment in the UW Center for Studies in Demography and Ecology, and is an Affiliate Associate Professor in Urban Design & Planning in the University of Washington College of Built Environments Urban Form Lab. He received his PhD in 2010, and has been on the faculty since 2012. He specializes in the objective measurement and analysis of the built environment using GIScience methodology. His current research investigates the relationship between health-related behaviors and built environment at fine spatial and temporal scales. Using new-generation devices that measure activity and location in real time, the data are being used to find associations between the types of activities people engage in and the types of environments people use as they go about their daily lives. He collaborates with researchers specializing in nutritional epidemiology, exercise physiology, rehabilitation medicine, and psychology for the purpose of understanding the relationships between built environment, diet, and physical activity. Phil received a Master of Forest Resources degree in 1994 at the UW College of Forest Resources where he helped develop and implement a GIS for the Makah Indian Nation. His Bachelor’s degree (1983) is from Seattle University in Humanities. Prior to his current appointment, he worked as a GIS specialist for the College of Forest Resources, the City of SeaTac, the Seattle Water Department, and an instructor at the University of Washington and Green River Community College.