Research Portal

August 26, 2022

Experimental Investigations and Empirical Modeling of Rubber Wear on Concrete Pavement

Emami, Anahita; Sah, Hos Narayan; Aguayo, Federico; Khaleghian, Seyedmeysam. (2022). Experimental Investigations and Empirical Modeling of Rubber Wear on Concrete Pavement. Journal of Engineering Tribology.

View Publication

Abstract

Material loss due to wear plays a key role in the service life of rubber components in various tribological applications, such as tires, shoe soles, wiper blades, to name a few. It also adversely affects energy consumption, economy, and CO2 emissions around the globe. Therefore, understanding and modeling the wear behavior of rubbers are important in the design of economic and environment-friendly rubber compounds. In this study, we investigated the effect of normal load and sliding velocity on the wear rate of rubber compounds widely used in the tire treads and evaluated the wear models previously proposed for rubbers to determine the best model to predict the rubber wear rate. The sliding wear rates of different types of Styrene-Butadiene Rubber (SBR) and Isoprene Rubber (IR) compounds on a broom finish concrete slab were measured for different sliding velocities and normal loads. The experimental results were used to evaluate and discuss different wear models proposed in the literature. A new empirical model was proposed to predict the wear rate by considering mechanical properties associated with rubber wear. The experimental results revealed that the wear rate of rubber compounds non-linearly depends on the normal load or friction force, while the effect of sliding velocity on the wear rate is not significant in the 20–100 mm/s range. Moreover, traces of both mechanical (abrasion) and chemical (smearing) wear were observed on all rubber compounds.

Keywords

Tire tread compounds, rubber wear, rubber-concrete interaction, smearing wear and abrasion, wear model