Skip to content

A Comparative Evaluation of Polymer-Modified Rapid-Set Calcium Sulfoaluminate Concrete: Bridging the Gap Between Laboratory Shrinkage and the Field Strain Performance

Akerele, D. D., & Aguayo, F. (2025). A Comparative Evaluation of Polymer-Modified Rapid-Set Calcium Sulfoaluminate Concrete: Bridging the Gap Between Laboratory Shrinkage and the Field Strain Performance. Buildings (Basel), 15(15), 2759. https://doi.org/10.3390/buildings15152759.

View Publication

Abstract

Rapid pavement repair demands materials that combine accelerated strength gains, dimensional stability, long-term durability, and sustainability. However, finding materials or formulations that offer these balances remains a critical challenge. This study systematically evaluates two polymer-modified belitic calcium sulfoaluminate (CSA) concretes—CSAP (powdered polymer) and CSA-LLP (liquid polymer admixture)—against a traditional Type III Portland cement (OPC) control under both laboratory and realistic outdoor conditions. Laboratory specimens were tested for fresh properties, early-age and later-age compressive, flexural, and splitting tensile strengths, as well as drying shrinkage according to ASTM standards. Outdoor 5 × 4 × 12-inch slabs mimicking typical jointed plain concrete panels (JPCPs), instrumented with vibrating wire strain gauges and thermocouples, recorded the strain and temperature at 5 min intervals over 16 weeks, with 24 h wet-burlap curing to replicate field practices. Laboratory findings show that CSA mixes exceeded 3200 psi of compressive strength at 4 h, but cold outdoor casting (~48 °F) delayed the early-age strength development. The CSA-LLP exhibited the lowest drying shrinkage (0.036% at 16 weeks), and outdoor CSA slabs captured the initial ettringite-driven expansion, resulting in a net expansion (+200 µε) rather than contraction. Approximately 80% of the total strain evolved within the first 48 h, driven by autogenous and plastic effects. CSA mixes generated lower peak internal temperatures and reduced thermal strain amplitudes compared to the OPC, improving dimensional stability and mitigating restraint-induced cracking. These results underscore the necessity of field validation for shrinkage compensation mechanisms and highlight the critical roles of the polymer type and curing protocol in optimizing CSA-based repairs for durable, low-carbon pavement rehabilitation.

Keywords

calcium sulfoaluminate cement (CSA); polymer-modified confrete (PMC); rapid-set concrete; early-age shrinkage; temperature-induced strain; outdoor vs. laboratory performance; sustainable concrete; field performance; mechanical properties