Research Portal

July 1, 2022

How Do Built-Environment Factors Affect Travel Behavior? A Spatial Analysis at Different Geographic Scales

Hong, Jinhyun; Shen, Qing; Zhang, Lei. (2014). How Do Built-Environment Factors Affect Travel Behavior? A Spatial Analysis at Different Geographic Scales. Transportation, 41(3), 419 – 440.

View Publication


Much of the literature shows that a compact city with well-mixed land use tends to produce lower vehicle miles traveled (VMT), and consequently lower energy consumption and less emissions. However, a significant portion of the literature indicates that the built environment only generates some minor-if any-influence on travel behavior. Through the literature review, we identify four major methodological problems that may have resulted in these conflicting conclusions: self-selection, spatial autocorrelation, inter-trip dependency, and geographic scale. Various approaches have been developed to resolve each of these issues separately, but few efforts have been made to reexamine the built environment-travel behavior relationship by considering these methodological issues simultaneously. The objective of this paper is twofold: (1) to better understand the existing methodological gaps, and (2) to reexamine the effects of built-environment factors on transportation by employing a framework that incorporates recently developed methodological approaches. Using the Seattle metropolitan region as our study area, the 2006 Household Activity Survey and the 2005 parcel and building data are used in our analysis. The research employs Bayesian hierarchical models with built-environment factors measured at different geographic scales. Spatial random effects based on a conditional autoregressive specification are incorporated in the hierarchical model framework to account for spatial contiguity among Traffic Analysis Zones. Our findings indicate that land use factors have highly significant effects on VMT even after controlling for travel attitude and spatial autocorrelation. In addition, our analyses suggest that some of these effects may translate into different empirical results depending on geographic scales and tour types.


Land-use; Urban Form; Multilevel Models; Physical-activity; Neighborhood; Choice; Impact; Specification; Accessibility; Causation; Built Environment; Travel Behavior; Self-selection; Spatial Autocorrelation; Bayesian Hierarchical Model