Research Portal

July 1, 2022

Efficient Optimization of Post-Disaster Reconstruction of Transportation Networks

El-Anwar, Omar; Ye, Jin; Orabi, Wallied. (2016). Efficient Optimization of Post-Disaster Reconstruction of Transportation Networks. Journal Of Computing In Civil Engineering, 30(3).

View Publication

Abstract

Catastrophes, such as hurricanes, earthquakes, and tsunamis often cause large-scale damage to transportation systems. In the aftermath of these disasters, there is a present challenge to quickly analyze various reconstruction plans and assess their impacts on restoring transportation services. This paper presents a new methodology for optimizing post-disaster reconstruction plans for transportation networks with superior computational efficiency employing mixed-integer linear programming (MILP). The model is capable of optimizing transportation recovery projects prioritization and contractors assignment in order to simultaneously: (1)accelerate networks recovery; and (2)minimize public expenditures. The full methodology is presented in two companion publications, where the focus of this paper is to propose new methods for (1)decomposing traffic analysis; (2)assessing the traffic and cost performance of reconstruction plans; (3)reducing the massive solution search space; and (4)phasing the use of mixed-integer linear programming to optimize the problem. An illustrative example is presented throughout the paper to demonstrate the implementation phases. (C) 2015 American Society of Civil Engineers.

Keywords

Cost Reduction; Disasters; Emergency Management; Integer Programming; Linear Programming; Project Management; Public Finance; Search Problems; Town And Country Planning; Transportation; Solution Search Space Reduction; Cost Performance Assessment; Traffic Performance Assessment; Traffic Analysis; Public Expenditure Minimization; Network Recovery Acceleration; Contractor Assignment; Transportation Recovery Project Prioritization; Milp; Mixed-integer Linear Programming; Post-disaster Reconstruction Plan Optimization; Transportation Service Restoration; Reconstruction Plans; Transportation System Large-scale Damage; Tsunami; Earthquake; Hurricane; Catastrophe; Transportation Network; Post-disaster Reconstruction Optimization; Optimizing Resource Utilization; Natural Disasters; Housing Projects; Construction; Performance; Robustness; Recovery; Plans; Transportation Network Reconstruction; Post-disaster Recovery; Multi-objective Optimization; Computational Cost; Contractors Assignment; Search Space