Skip to content

Physiological Cost Of Concrete Construction Activities

Lee, Wonil; Migliaccio, Giovanni Ciro. (2016). Physiological Cost Of Concrete Construction Activities. Construction Innovation, 16(3), 281 – 306.

View Publication

Abstract

Purpose - The purpose of this paper was to investigate the physiological cost of concrete construction activities. Design/methodology/approach - Five concrete construction workers were recruited. The workers' three-week heart rate (HR) data were collected in summer and autumn. In this paper, several HR indexes were used to investigate the physiological cost of work in concrete construction trades, including average working HR, relative HR and ratio of working HR to resting HR. Findings - This paper measures how absolute and relative HRs vary throughout a workday and how working HR compares to resting HR for individual workers. Research limitations/implications - Field observations are usually extremely difficult as researchers need to overcome a number of barriers, including employers' resistance to perceived additional liabilities, employees' fear that their level of activity will be reported to managers and many other practical and technical difficulties. As these challenges increase exponentially with the number of employers, subjects and sites, this study was limited to a small number of subjects all working for the same employer on the same jobsite. Still, challenges are often unpredictable and lessons learned from this study are expected to guide both our and other researchers' continuation of this work. Originality/value - The time effect on the physiological cost of work has not been considered in previous studies. Thus, this study is noteworthy owing to the depth of the data collected rather than the breadth of the data.

Keywords

Concrete; Construction Industry; Costing; Human Resource Management; Occupational Health; Personnel; Physiology; Physiological Cost; Concrete Construction Activity; Construction Workers; Summer; Autumn; Construction Trade; Working Heart Rate; Relative Heart Rate; Resting Heart Rate; Employee Fear; Jobsite; Heart-rate Strain; Stress; Work; Risk; Management; Fusion; Model; Index; Biosensing And Environmental Sensing; Occupational Safety And Health; Threshold Limit Value; Work Physiology