Research Portal

July 1, 2022

What Determines Rail Transit Passenger Volume? Implications for Transit Oriented Development Planning

Pan, Haixiao; Li, Jing; Shen, Qing; Shi, Cheng. (2017). What Determines Rail Transit Passenger Volume? Implications for Transit Oriented Development Planning. Transportation Research: Part D, 57, 52 – 63.

View Publication

Abstract

Transit oriented development (TOD) has been an important topic for urban transportation planning research and practice. This paper is aimed at empirically examining the effect of rail transit station-based TOD on daily station passenger volume. Using integrated circuit (IC) card data on metro passenger volumes and cellular signaling data on the spatial distribution of human activities in Shanghai, the research identifies variations in ridership among rail transit stations. Then, regression analysis is performed using passenger volume in each station as the dependent variable. Explanatory variables include station area employment and population, residents' commuting distances, metro network accessibility, status as interchange station, and coupling with commercial activity centers. The main findings are: (1) Passenger volume is positively associated with employment density and residents' commuting distance around station; (2) stations with earlier opening dates and serving as transfer nodes tend to have positive association with passenger volumes; (3) metro stations better integrated with nearby commercial development tend to have larger passenger volumes. Several implications are drawn for TOD planning: (1) TOD planning should be integrated with rail transit network planning; (2) location of metro stations should be coupled with commercial development; (3) high employment densities should be especially encouraged as a key TOD feature; and (4) interchange stations should be more strategically positioned in the planning for rail transit network.

Keywords

Railroad Passenger Traffic; Transportation; Public Transit; Volume Measurements; Smart Cards; Mathematical Models; Accessibility; Density; Rail Transit Passenger Volume; Spatial Coupling Effect; Tod; Land-use; Built Environment; Travel-demand; Mode Choice; Impacts; Distance