Research Portal

July 1, 2022

Measuring Circadian Lighting through High Dynamic Range Photography

Jung, B.; Inanici, M. (2019). Measuring Circadian Lighting through High Dynamic Range Photography. Lighting Research & Technology, 51(5), 742 – 763.

View Publication

Abstract

The human ocular system functions in a dual manner. While the most well-known function is to facilitate vision, a growing body of research demonstrates its role in resetting the internal body clock to synchronize with the 24-hour daily cycle. Most research on circadian rhythms is performed in controlled laboratory environments. Little is known about the variability of circadian light within the built and natural environments. Currently, very few specialized devices measure the circadian light, and they are not accessible to many researchers and practitioners. In this paper, tristimulus colour calibration procedures for high dynamic range photography are developed to measure circadian lighting. Camera colour accuracy is evaluated through CIE trichromatic (XYZ) measurements; and the results demonstrate a strong linear relationship between the camera recordings and a scientific-grade colorimeter. Therefore, it is possible to correct for the colour aberrations and use high dynamic range photographs to measure both photopic and circadian lighting values. Spectrophotometric measurements are collected to validate the methodology. Results demonstrate that measurements from high dynamic range photographs can correspond to the physical quantity of circadian luminance with reasonable precision and repeatability. Circadian data collected in built environments can be utilized to study the impact of design decisions on human circadian entrainment and to create guidelines and metrics for designing circadian friendly environments.

Keywords

Physical Constants; Medical Photography; Photography; Built Environment; Morningness-eveningness Questionnaire; Statistical Reliability; Circadian Rhythms; Action Spectrum; Ganglion-cells; Bright Light; Exposure; Sensitivity; Framework; Daylight; Daytime; Model; Rod