Research Portal

July 1, 2022

Life-Cycle Cost and Carbon Footprint Analysis for Light-framed Residential Buildings Subjected to Tornado Hazard

Adhikari, Pramodit; Mahmoud, Hussam; Xie, Aiwen; Simonen, Kathrina; Ellingwood, Bruce. (2020). Life-Cycle Cost and Carbon Footprint Analysis for Light-framed Residential Buildings Subjected to Tornado Hazard. Journal Of Building Engineering, 32.

View Publication

Abstract

Light-frame wood building construction dominates the single-family residential home market in the United States. Such buildings are susceptible to damage from extreme winds due to hurricanes in coastal areas and tornados in the Midwest. The consequences of extreme winds on the built environment and on social and economic institutions within the community can be severe and are likely to increase in the coming decades as a result of increases in urbanization and economic development and the potential impacts of changing climate in hazard prone areas. Current building practices provide minimum standards for occupant safety and health, including structural integrity, water and sanitation, lighting, ventilation, means of egress and fire protection. However, they generally do not consider building resilience, which includes robustness and an ability to recover following extreme natural hazard events. Nor do they address sustainability, the notion that building design, construction and rehabilitation should not adversely impact the environment. In this paper, we establish a generalized cost and carbon footprint life-cycle analysis methodology for examining the benefits of different building practices for residential light-frame wood construction subjected to tornado hazards. A multiobjective approach is used to reveal tradeoffs between resilient and sustainable practices for typical residential construction. We show that when the life cycle of a typical residence is considered, a balance between resilience, sustainability and cost might be achieved in design and rehabilitation of residential building construction for tornado hazards.

Keywords

Performance; Risk; Fragility; Residential Buildings; Life-cycle Analysis; Resilience; Optimal Decisions; Sustainable Construction; Tornadoes