Research Portal

July 1, 2022

Design Of Broadband Helmholtz Resonator Arrays Using The Radiation Impedance Method.

Rajendran, Vidhya; Piacsek, Andy; Méndez Echenagucia, Tomás. (2022). Design Of Broadband Helmholtz Resonator Arrays Using The Radiation Impedance Method. Journal Of The Acoustical Society Of America, 151(1), 457 – 466.

View Publication


This paper describes the design process of a low-frequency sound absorptive panel composed of differently tuned Helmholtz resonators (HRs), considering size and fabrication constraints relevant for applications in the building sector. The paper focuses on cylindrical and spiral resonators with embedded necks that are thin and can achieve high absorption. the mutual interaction between the resonators was modeled based on the radiation impedance method and it plays a key component in enhancing the absorption performance of the array. The differential evolution search algorithm was used to design the resonators and modify their mutual interaction to derive the absorption performance of multiple HR arrays for comparison. Optimizations to the resonator configuration and the neck resistance were implemented to produce a unit panel that has a broadband absorption performance with emphasis on the low to mid frequencies and is thin and light in weight. Unit panels with dimensions of 20 cm x 20 cm , consisting of 29 cylindrical HRs designed to absorb in the 25–900 Hz frequency range, were constructed and tested in a custom-built impedance tube. The measured absorption performance of these panels is consistent with the theoretical predictions. [ABSTRACT FROM AUTHOR]; Copyright of Journal of the Acoustical Society of America is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)


Helmholtz Resonators; Differential Evolution; Search Algorithms; Radiation; Structural Optimization; Resonators; Bandpass Filters