Skip to content

Blue Seattle: Immanent Ethics and Contemporary Urbanisation

Harris, Keith. (2020). Blue Seattle: Immanent Ethics and Contemporary Urbanisation. Area, 52(2), 273 – 281.

View Publication

Abstract

This paper asserts that critical investigations into the urbanisation process should consider the actually existing ethics of the process itself, without defaulting to transcendent normative principles. Grounded in an ontology of immanence, as presented in Deleuze and Guattari's (9) political philosophy, I argue that attention must be paid to the production and transformation of normativity. Using the redevelopment of the South Lake Union (SLU) neighbourhood of Seattle - (in)famously home to Amazon, but largely envisioned and developed by Paul Allen's investment and philanthropic organisation, Vulcan - as an analytical starting point, this paper sketches out a profile of the blue dimension of the genesis of Seattle's environmental ethic, from early efforts to reshape the region's hydrology and address water pollution in Lake Washington, through efforts by governmental bodies and Vulcan to protect water quality and salmon habitat, and on to a large-scale infrastructure project - the Elliott Bay Seawall replacement - that includes features to enhance biodiversity and ecological functioning in the nearshore environment. In tracking these movements, I identify the emergence of an explicitly post-anthropocentric ethic from what initially appears as an aesthetic concern, while also highlighting the ongoing complexification of an earlier engineering ethic that dates back to the earliest attempts by settlers to manage the natural environment.

Keywords

Water Pollution; Urbanization; Water Quality; Ethics; Political Philosophy; Home Ownership; Seattle (wash.); Blue Space; Deleuze And Guattari; Immanence; Post-anthropocentrism; Seattle; Allen, Paul, 1953-2018; Deleuze; Post-anthropocentrism

Community Response to Hurricane Threat: Estimates of Household Evacuation Preparation Time Distributions

Lindell, Michael K.; Sorensen, John H.; Baker, Earl J.; Lehman, William P. (2020). Community Response to Hurricane Threat: Estimates of Household Evacuation Preparation Time Distributions. Transportation Research Part D-transport And Environment, 85.

View Publication

Abstract

Household evacuation preparation time distributions are essential when computing evacuation time estimates (ETEs) for hurricanes with late intensification or late changing tracks. Although evacuation preparation times have been assessed by expected task completion times, actual task completion times, and departure delays, it is unknown if these methods produce similar results. Consequently, this study compares data from one survey assessing expected task completion times, three surveys assessing actual task completion times, and three surveys assessing departure delays after receiving a warning. In addition, this study seeks to identify variables that predict household evacuation preparation times. These analyses show that the three methods of assessing evacuation preparation times produce results that are somewhat different, but the differences have plausible explanations. Household evacuation preparation times are poorly predicted by demographic variables, but are better predicted by variables that predict evacuation decisions-perceived storm characteristics, expected personal impacts, and evacuation facilitators.

Keywords

Travel Demand Model; Decision-making; Communication; Prediction; Simulation; Hurricane Evacuation Models; Preparation Time Distributions; Mobilization Time Distributions; Departure Delay Time Distributions; Social Milling

The Use of Markets in Housing Policy: A Comparative Analysis of Housing Subsidy Programs

Colburn, Gregg. (2021). The Use of Markets in Housing Policy: A Comparative Analysis of Housing Subsidy Programs. Housing Studies, 36(1), 46 – 79.

View Publication

Abstract

Many countries use demand-side housing subsidies to support low-income households. Unlike public or social housing programs, demand-side subsidies require recipients to enter the private market to use their benefits. The focus of this study is the experiences of assisted households in the private housing market and the outcomes they achieve. Given the link between policy design and program outcomes and because all housing subsidy programs are not created equal, one might expect the experiences and outcomes of recipients to also vary. To examine this relationship, using data from national housing surveys, this study analyzes cross-national variation in housing support programs and compares the housing and neighbourhood outcomes of subsidized households in the US, the UK, and the Netherlands. The findings of this study highlight that market context and policy design are associated with housing outcomes. In particular, the strong tenant supports and favourable design of housing assistance in the Netherlands is associated with favourable outcomes for subsidized households. In the US and the UK, subsidized households, in general, underperform their unsubsidized peers. This article underscores the importance of institutional context and program design when public assistance programs require recipients to enter the private market to use a benefit.

Keywords

Housing; Housing Subsidies; Comparative Studies; United States; Great Britain; Netherlands; Comparative; Outcomes; Subsidized Housing; Subsidy; Choice Vouchers; Poverty Deconcentration; United-states; Tax Credit; Income; Neighborhoods; Opportunity; Future; Britain; Comparative Analysis; Subsidies; Households; Context; Housing Policy; Design; Subsidies (financial); Housing Market; Low Income Groups; Public Housing; Assistance Programmes; United Kingdom--uk; United States--us

Population Mobility and the Transmission Risk of the Covid-19 in Wuhan, China

Luo, Minghai; Qin, Sixian; Tan, Bo; Cai, Mingming; Yue, Yufeng; Xiong, Qiangqiang. (2021). Population Mobility and the Transmission Risk of the Covid-19 in Wuhan, China. Isprs International Journal Of Geo-information, 10(6).

View Publication

Abstract

At the beginning of 2020, a suddenly appearing novel coronavirus (COVID-19) rapidly spread around the world. The outbreak of the COVID-19 pandemic in China occurred during the Spring Festival when a large number of migrants traveled between cities, which greatly increased the infection risk of COVID-19 across the country. Financially supported by the Wuhan government, and based on cellphone signaling data from Unicom (a mobile phone carrier) and Baidu location-based data, this paper analyzed the effects that city dwellers, non-commuters, commuters, and people seeking medical services had on the transmission risk of COVID-19 in the early days of the pandemic in Wuhan. The paper also evaluated the effects of the city lockdown policy on the spread of the pandemic outside and inside Wuhan. The results show that although the daily business activities in the South China Seafood Wholesale Market and nearby commuters' travel behaviors concentrated in the Hankou area, a certain proportion of these people were distributed in the Wuchang and Hanyang areas. The areas with relatively high infection risks of COVID-19 were scattered across Wuhan during the early outbreak of the pandemic. The lockdown in Wuhan closed the passageways of external transport at the very beginning, largely decreasing migrant population and effectively preventing the spread of the pandemic to the outside. However, the Wuhan lockdown had little effect on preventing the spread of the pandemic within Wuhan at that time. During this period, a large amount of patients who went to hospitals for medical services were exposed to a high risk of cross-infection without precaution awareness. The pandemic kept dispersing in three towns until the improvement of the capacity of medical treatment, the management of closed communities, the national support to Wuhan, and the implementation of a series of emergency responses at the same time. The findings in this paper reveal the spatiotemporal features of the dispersal of infection risk of COVID-19 and the effects of the prevention and control measures during the early days of the pandemic. The findings were adopted by the Wuhan government to make corresponding policies and could also provide supports to the control of the pandemic in the other regions and countries.

Keywords

Covid-19; Covid-19 Pandemic; Sars-cov-2; Seafood Markets; Pandemics; Cell Phones; City Dwellers; Wuhan (china); Big Data; Novel Coronavirus; Population Mobility; Risk Analysis; Zika Virus; Diseases; Africa; Impact; Ebola; Spain; Passageways; Smartphones; Investigations; Disease Control; Emergency Response; Health Services; Viral Diseases; Policies; Outbreaks; Emergency Preparedness; Risk; Seafood; Coronaviruses; Medical Treatment; Transmission; Commuting; Dispersion; Dispersal; Infections; Cross-infection; Epidemics; Health Risks; Disease Transmission; China

Dynamic Life Cycle Assessment: A Review of Research for Temporal Variations in Life Cycle Assessment Studies

Su, Shu; Li, Xiaodong; Zhu, Chen; Lu, Yujie; Lee, Hyun Woo. (2021). Dynamic Life Cycle Assessment: A Review of Research for Temporal Variations in Life Cycle Assessment Studies. Environmental Engineering Science, 38(11), 1013 – 1026.

View Publication

Abstract

Life cycle assessment (LCA) is a comprehensive and important environmental management tool around the world. However, lacking temporal information has been a major challenge. In the past decade, dynamic LCA (DLCA), which incorporates temporal variations into assessment, has been an emerging research topic with increasing publications. A timely comprehensive review is needed to present current progress and discuss future directions. This article reviews 144 DLCA articles quantitatively and qualitatively. A bibliometric approach is adopted to conduct co-occurrence analysis and cluster analysis of DLCA studies. The research progress, approaches, and limitations of three temporal variation types (i.e., dynamic life cycle inventory, dynamic characterization factors, and dynamic weighting factors) in DLCA studies are systematically analyzed and discussed. It is concluded that: (1) dynamic inventory analysis is usually conducted by collecting time-differentiated data at each time step. Field monitoring, simulation, scenario analysis, and prediction based on historical data are common approaches. (2) Dynamic characterization studies primarily focus on two impact categories: global warming and toxicity. More studies are in need. (3) Various methods and indicators (i.e., dynamic pollution damage cost, temporal environmental policy targets, and discount rates) are used to solve the dynamic weighting issue, and they have specific limitations. Finally, three interesting topics are discussed: comparison between dynamic and static results, the large data amount issue, and the trend of tools development. This review offers a holistic view on temporal variations in DLCA studies and provides reference and directions for future dynamic studies.

Keywords

Literature Reviews; Cluster Analysis (statistics); Global Warming; Environmental Management; Discount Prices; Emission Inventories; Dynamic Characterization; Dynamic Inventory Analysis; Dynamic Weighting; Environmental Impact; Life Cycle Assessment; Temporal Variation; Cluster Analysis; Life Cycle; 'current; Dynamic Inventory Analyse; Dynamic Lca; Environmental Management Tool; Inventory Analysis; Research Topics; Temporal Information; Dependent Climate Impact; Greenhouse-gas Emission; Biogenic Carbon; Assessment Framework; Fresh-water; Electricity-generation; Energy Efficiency; Wheat Production; Embodied Energy; Time

Comparative Life Cycle Assessment of Mass Timber and Concrete Residential Buildings: A Case Study in China

Chen, Cindy X.; Pierobon, Francesca; Jones, Susan; Maples, Ian; Gong, Yingchun; Ganguly, Indroneil. (2022). Comparative Life Cycle Assessment of Mass Timber and Concrete Residential Buildings: A Case Study in China. Sustainability, 14(1).

View Publication

Abstract

As the population continues to grow in China's urban settings, the building sector contributes to increasing levels of greenhouse gas (GHG) emissions. Concrete and steel are the two most common construction materials used in China and account for 60% of the carbon emissions among all building components. Mass timber is recognized as an alternative building material to concrete and steel, characterized by better environmental performance and unique structural features. Nonetheless, research associated with mass timber buildings is still lacking in China. Quantifying the emission mitigation potentials of using mass timber in new buildings can help accelerate associated policy development and provide valuable references for developing more sustainable constructions in China. This study used a life cycle assessment (LCA) approach to compare the environmental impacts of a baseline concrete building and a functionally equivalent timber building that uses cross-laminated timber as the primary material. A cradle-to-gate LCA model was developed based on onsite interviews and surveys collected in China, existing publications, and geography-specific life cycle inventory data. The results show that the timber building achieved a 25% reduction in global warming potential compared to its concrete counterpart. The environmental performance of timber buildings can be further improved through local sourcing, enhanced logistics, and manufacturing optimizations.

Keywords

Mass Timber; Embodied Carbon; Climate Change; Carbon Reduction; Building Footprint; Built Environment; Forest Products; Life Cycle Analysis; Environmental Impacts; Wood Laminates; Geography; Concrete; Flooring; Manufacturing; Global Warming; Concrete Construction; Construction Materials; Emissions Trading; Greenhouse Gases; Residential Areas; Energy Consumption; Life Cycle Assessment; Greenhouse Effect; Life Cycles; Construction Industry; Logistics; Floor Coverings; Urbanization; Timber; Urban Environments; Building Components; Emissions; Residential Buildings; Carbon Footprint; Urban Areas; Environmental Impact; Building Construction; Case Studies; Wood Products; Mitigation; Buildings; Timber (structural); United States--us; China

Symbiotic And Regenerative Sustainability Frameworks: Moving Towards Circular City Implementation

Horn, Erin; Proksch, Gundula. (2022). Symbiotic And Regenerative Sustainability Frameworks: Moving Towards Circular City Implementation. Frontiers In Built Environment, 7.

View Publication

Abstract

Growing in popularity, the circular city framework is at the leading-edge of a larger and older transitional dialogue which envisions regenerative, circular, and symbiotic systems as the future of urban sustainability. The need for more research supporting the implementation of such concepts has been often noted in literature. To help address this gap, this holistic review assesses a range of pertinent sustainability frameworks as a platform to identify actionable strategies which can be leveraged to support and implement circular city goals. This assessment is grounded in a holistic overview of related frameworks across interdisciplinary and scalar domains including circular city, the food-water-energy nexus, circular economy, bioeconomy, industrial symbiosis, regenerative design, and others. Building on these interrelationships, the applied strategies espoused within these publications are synthesized and assessed in the context of circular city implementation. From an initial 250 strategies identified in literature, thirty-four general implementation strategies across six thematic areas are distinguished and discussed, finding strong overlaps in implementation strategies between frameworks, and opportunities to further develop and harness these synergies to advance circular city toward sustainable urban futures.

Keywords

Circular City; Implementation Strategies; Literature Review; Circular Economy; Fwe-nexus; Regenerative Design; Systems Integration; Environmental Assessment; Rooftop Greenhouses; Anaerobic-digestion; Urban Agriculture; Built Environment; Waste Management; Climate-change; Carbon Nexus; Food Nexus; Economy

Maximizing the Sustainability of Integrated Housing Recovery Efforts

El-Anwar, Omar; El-Rayes, Khaled; Elnashai, Amr S. (2010). Maximizing the Sustainability of Integrated Housing Recovery Efforts. Journal Of Construction Engineering And Management, 136(7), 794 – 802.

View Publication

Abstract

The large-scale and catastrophic impacts of Hurricanes Katrina and Rita in 2005 challenged the efficacy of traditional postdisaster temporary housing methods. To address these challenges, the U.S. Congress appropriated $400 million to the Department of Homeland Security to support alternative housing pilot programs, which encourage innovative housing solutions that will facilitate sustainable and permanent affordable housing in addition to serving as temporary housing. Facilitating and maximizing the sustainability of postdisaster alternative housing is an important objective that has significant social, economic, and environmental impacts. This paper presents the development of a novel optimization model that is capable of (1) evaluating the sustainability of integrated housing recovery efforts under the alternative housing pilot program and (2) identifying the housing projects that maximize sustainability. An application example is analyzed to demonstrate the use of the developed model and its unique capabilities in maximizing the sustainability of integrated housing recovery efforts after natural disasters.

Keywords

Northridge Earthquake; United-states; Disasters; Optimization; Postdisaster Alternative Housing; Sustainability; Housing Recovery

Effects of Mid-Twenty-first Century Climate and Land Cover Change on the Hydrology Of the Puget Sound Basin, Washington

Cuo, Lan; Beyene, Tazebe K.; Voisin, Nathalie; Su, Fengge; Lettenmaier, Dennis P.; Alberti, Marina; Richey, Jeffrey E. (2011). Effects of Mid-Twenty-first Century Climate and Land Cover Change on the Hydrology Of the Puget Sound Basin, Washington. Hydrological Processes, 25(11), 1729 – 1753.

View Publication

Abstract

The distributed hydrology-soil-vegetation model (DHSVM) was used to study the potential impacts of projected future land cover and climate change on the hydrology of the Puget Sound basin, Washington, in the mid-twenty-first century. A 60-year climate model output, archived for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), was statistically downscaled and used as input to DHSVM. From the DHSVM output, we extracted multi-decadal averages of seasonal streamflow, annual maximum flow, snow water equivalent (SWE), and evapotranspiration centred around 2030 and 2050. Future land cover was represented by a 2027 projection, which was extended to 2050, and DHSVM was run (with current climate) for these future land cover projections. In general, the climate change signal alone on sub-basin streamflow was evidenced primarily through changes in the timing of winter and spring runoff, and slight increases in the annual runoff. Runoff changes in the uplands were attributable both to climate (increased winter precipitation, less snow) and land cover change (mostly reduced vegetation maturity). The most climatically sensitive parts of the uplands were in areas where the current winter precipitation is in the rain-snow transition zone. Changes in land cover were generally more important than climate change in the lowlands, where a substantial change to more urbanized land use and increased runoff was predicted. Both the annual total and seasonal distribution of freshwater flux to Puget Sound are more sensitive to climate change impacts than to land cover change, primarily because most of the runoff originates in the uplands. Both climate and land cover change slightly increase the annual freshwater flux to Puget Sound. Changes in the seasonal distribution of freshwater flux are mostly related to climate change, and consist of double-digit increases in winter flows and decreases in summer and fall flows. Copyright (C) 2010 John Wiley & Sons, Ltd.

Keywords

Joaquin River-basin; Water-resources; Change Impacts; Model; Sensitivity; Temperature; Prediction; Streamflow; Forecasts; Humidity; Hydrologic Prediction; Climate Change Impacts; Land Cover Change Impacts