Abdirad, Hamid; Dossick, Carrie S. (2019). Restructuration of Architectural Practice in Integrated Project Delivery (IPD): Two Case Studies. Engineering, Construction And Architectural Management, 26(1), 104 – 117.
View Publication
Abstract
Purpose The purpose of this paper is to clarify that while integrated project delivery (IPD) methods can be momenta for restructuring architectural practice, they do not predetermine specific patterns of restructuration for the roles, responsibilities and services of architects. Design/methodology/approach This paper is based on a multiple case study design; two IPD projects were theoretically sampled and studied. The data collection methods included semi-structured interviews and observations. An inductive data analysis approach was applied to frame the phenomena, conduct cross-case comparisons and develop propositions. Findings While IPD implementations set expectations for new structures for practices, it is the project participants' situated decisions that lead to the restructuration of some dimensions of architectural practice. The dimensions in this study included team formation, design leadership and collaboration and architectural services. IPD project participants locally changed and redefined conventional roles, responsibilities and project artifacts (e.g. drawings and models) that concerned design development and coordination. Practical implications - IPD context, by itself, does not predetermine a fixed pattern of change in establishing designers' roles, responsibilities and services because restructuration is highly negotiated amongst the IPD parties and can lead to different responses to this contractual setting. Contracts set expectations for collaborative behavior, but the fulfillment of these expectations is situated and emerging as project participants negotiate to develop practices. Originality/value - While IPD research and guidelines aim to provide recipes for IPD implementation, this study contributes to the body of knowledge by clarifying that IPD is a context in which unprecedented ways of practice restructuration could emerge.
Keywords
Construction Industry; Contracts; Data Analysis; Human Resource Management; Innovation Management; Organisational Aspects; Project Management; Team Working; Architectural Practice; Case Studies; Integrated Project Delivery Methods; Specific Patterns; Responsibilities; Design/methodology; Multiple Case Study Design; Ipd Projects; Data Collection Methods; Observations; Inductive Data Analysis Approach; Cross-case Comparisons; Ipd Implementation; Practices; Design Leadership; Architectural Services; Ipd Project Participants; Conventional Roles; Project Artifacts; Concerned Design Development; Coordination; Practical Implications; Ipd Context; Designers; Ipd Parties; Different Responses; Practice Restructuration; Contractors; Ipd; Architecture; Integration; Design Management; Case Study; Integrated Project Delivery; Integrated Practice; Restructuration
Habibnezhad, M.; Puckett, J.; Fardhosseini, M.S.; Jebelli, H.; Stentz, T.; Pratama, L.A.. (2019). Experiencing Extreme Height for the First Time: The Influence of Height, Self-Judgment of Fear and a Moving Structural Beam on the Heart Rate and Postural Sway During the Quiet Stance. Arxiv, 9 pp.
View Publication
Abstract
Falling from elevated surfaces is the main cause of death and injury at construction sites. Based on the Bureau of Labor Statistics (BLS) reports, an average of nearly three workers per day suffer fatal injuries from falling. Studies show that postural instability is the foremost cause of this disproportional falling rate. To study what affects the postural stability of construction workers, we conducted a series of experiments in the virtual reality (VR). Twelve healthy adults, all students at the University of Nebraska were recruited for this study. During each trial, participants heart rates and postural sways were measured as the dependent factors. The independent factors included a moving structural beam (MB) coming directly at the participants, the presence of VR, height, the participants self-judgment of fear, and their level of acrophobia. The former was designed in an attempt to simulate some part of the steel erection procedure, which is one of the key tasks of ironworkers. The results of this study indicate that height increase the postural sway. Self-judged fear significantly was found to decrease postural sway, more specifically the normalized total excursion of the center of pressure (TE), both in the presence and absence of height. Also, participants heart rates significantly increase once they are confronted by a moving beam in the virtual environment (VE), even though they are informed that the beam will not hit them. The findings of this study can be useful for training novice ironworkers that will be subjected to height and steel erection for the first time.
Keywords
Biocontrol; Biomechanics; Construction Industry; Ergonomics; Injuries; Mechanoception; Medical Computing; Occupational Safety; Personnel; Statistical Analysis; Virtual Reality; Extreme Height; Moving Structural Beam; Heart Rate; Postural Sway; Injury; Construction Sites; Labor Statistics Reports; Fatal Injuries; Postural Instability; Foremost Cause; Disproportional Falling Rate; Postural Stability; Construction Workers; Participants Heart Rates; Height Increase; Moving Beam
Moudon, Anne Vernez; Huang, Ruizhu; Stewart, Orion T.; Cohen-Cline, Hannah; Noonan, Carolyn; Hurvitz, Philip M.; Duncan, Glen E. (2019). Probabilistic Walking Models Using Built Environment and Sociodemographic Predictors. Population Health Metrics, 17(1).
View Publication
Abstract
BackgroundIndividual sociodemographic and home neighborhood built environment (BE) factors influence the probability of engaging in health-enhancing levels of walking or moderate-to-vigorous physical activity (MVPA). Methods are needed to parsimoniously model the associations.MethodsParticipants included 2392 adults drawn from a community-based twin registry living in the Seattle region. Objective BE measures from four domains (regional context, neighborhood composition, destinations, transportation) were taken for neighborhood sizes of 833 and 1666 road network meters from home. Hosmer and Lemeshow's methods served to fit logistic regression models of walking and MVPA outcomes using sociodemographic and BE predictors. Backward elimination identified variables included in final models, and comparison of receiver operating characteristic (ROC) curves determined model fit improvements.ResultsBuilt environment variables associated with physical activity were reduced from 86 to 5 or fewer. Sociodemographic and BE variables from all four BE domains were associated with activity outcomes but differed by activity type and neighborhood size. For the study population, ROC comparisons indicated that adding BE variables to a base model of sociodemographic factors did not improve the ability to predict walking or MVPA.ConclusionsUsing sociodemographic and built environment factors, the proposed approach can guide the estimation of activity prediction models for different activity types, neighborhood sizes, and discrete BE characteristics. Variables associated with walking and MVPA are population and neighborhood BE-specific.
Keywords
Walking; Confidence Intervals; Research Funding; Transportation; Logistic Regression Analysis; Built Environment; Socioeconomic Factors; Predictive Validity; Receiver Operating Characteristic Curves; Data Analysis Software; Descriptive Statistics; Psychology; Washington (state); Active Travel; Home Neighborhood Domains; Physical Activity; Physical-activity; United-states; Life Stage; Adults; Attributes; Health; Associations; Destination; Pitfalls
Tobey, Michael B.; Binder, Robert B.; Yoshida, Takahiro; Yamagata, Yoshiki. (2019). Urban Systems Design Case Study: Tokyo’s Sumida Ward. Smart Cities, 2(4), 453 – 470.
View Publication
Abstract
Meeting the needs of increasing environmental and systematic pressures in urban settlements requires the use of integrated and wholistic approaches. The Urban Systems Design (USD) Conceptual Framework joins the metric-based modeling of rationalized methods with human-driven goals to form a combined iterative design and analysis loop. The framework processes information for the fundamental element of cities-humans-to large-scale modeling and decision-making occurring in district- and ward-level planning. There is a need in the planning and design profession to better integrate these efforts at a greater scale to create smart communities that are inclusive and comprehensive in aspects from data management to energy and transportation networks. The purpose of this study is to examine the applicability of this method as it pertains to a model and design integrated approach. Northern Sumida Ward, located in Tokyo, exemplifies the contextualized needs of Tokyo, and Japan, while forming a coherent internal community. Focusing on methodology, our process explores the creation of typologies, metric-based analysis, and design-based approaches that are integrated into modeling. The results of the analyses provide initial evidence regarding the validity of the USD approach in modeling changes to complex systems at differing design scales, connecting various qualities of the built environment, building and urban forms, and diagnostic comparisons between baseline and change conditions. Because of some inconsistencies and the need for further evidence gathering, the methods and processes show that there is much work to be done to strengthen the model and to continue building a more productive field of USD. However, in this framework's continuing evolution, there is increasing evidence that combining the planning and design of urban systems creates a more resilient, economically viable, sustainable, and comfortable city.
Keywords
Urban Planning; Resilience; Sustainability; Economics; Human Factors; Tokyo; Planning Support System; Gis
Bautista-Hernández, Dorian. (2020). Urban Structure and its Influence on Trip Chaining Complexity in the Mexico City Metropolitan Area. Urban, Planning And Transport Research, 8(1), 71 – 97.
View Publication
Abstract
This project studies the relationship between the urban structure of the Mexico City Metropolitan Area (MCMA) and two aspects of commuter travel patterns: (1) number of stops in a tour and (2) complexity of trip chaining. Two regression models were explored, one for each dependent variable of interest. The analysis was applied for car drivers, transit users and travelers with mixed transportation separately. Covariates include individual, household, travel and urban form variables, which showed differential effects according to the transportation mode. According to the number of significant covariates, it can be said that there is less impact of urban form on trip generation and complexity of travel for car drivers (only mixed land use at destination being significant for complexity of travel) and mixed transportation (being only significant job access for complexity of travel) than for transit users (being significant job access, population density, mixed land use at origin for extra trip, number of trips and complexity of travel). The directions of these effects vary according to the transportation mode and are discussed in terms of reported literature.
Keywords
Trip Generation; Urban Structures; Chaining; Drivers; Population Density; Land Use; Regression Analysis; Regression Models; Transportation; Travel; Complexity; Automobile Drivers; Metropolitan Areas; Travel Patterns; Urban Areas; Dependent Variables; Mexico
Ianchenko, Alex; Simonen, Kathrina; Barnes, Clayton. (2020). Residential Building Lifespan and Community Turnover. Journal Of Architectural Engineering, 26(3).
View Publication
Abstract
Environmental impact studies within the built environment rely on predicting building lifespan to describe the period of occupation and operation. Most life cycle assessments (LCAs) are based on arbitrary lifespan values, omitting the uncertainties of assessing service life. This research models the lifespan of American residential housing stock as a probabilistic survival distribution based on available data from the American Housing Survey (AHS). The log-normal, gamma, and Weibull distributions were fit to demolition data from 1985 to 2009 and these three models were compared with one another using the Bayesian information criterion. Analysis revealed that the estimated average housing lifespan in the United States is 130 years given model assumptions, although a probabilistic approach to lifespan can yield higher accuracy on a case-by-case basis. Parameters for modeling housing lifespan as log-normal, gamma, and Weibull survival functions are published with the intent of further application in LCA. The application of probabilistic housing lifespan models to community-wide turnover and integration with existing simulations of natural disaster are proposed as potential ways to achieve community sustainability and resilience goals. (c) 2020 American Society of Civil Engineers.
Keywords
Energy-consumption; Service Life; Cycle; Demolition; Emissions; Design; Impact; Model; Housing Stock Lifetime; Residential Buildings; Housing Turnover; Life Cycle Assessment; Service Life Prediction
Nnaji, Chukwuma; Gambatese, John; Lee, Hyun Woo; Zhang, Fan. (2020). Improving Construction Work Zone Safety Using Technology: A Systematic Review of Applicable Technologies. Journal Of Traffic And Transportation Engineering (english Edition), 7(1), 61 – 75.
View Publication
Abstract
Once considered conventional, the construction industry is gradually increasing its reliance on innovations such as the application of technologies in safety management. Given the growing literature on technology applications in safety management and the varying opinions on the utility of applied technologies, a systematic review that streamlines findings from past studies is indispensable to construction stakeholders. Although a number of review studies are available in the building construction sector, the level of fragmentation and uniqueness within the construction industry necessitates a review study specifically targeting the heavy civil sector. In response, the present study applies a three-step approach to identify and review articles pertinent to the safety of highway construction work zones. The factors considered include the number of publications per year, publication locations, and technology types. In addition, the present study proposes to broadly group work zone safety technologies (WZSTs) into three categories based on their primary purpose: speed reduction systems, intrusion prevention and warning systems, and human-machine-interaction detection systems. Key findings include WZST research trends, application of smart work zone systems, and the potential relationship between WZSTs and fatalities. The paper ends with the identification of six additional research areas aimed at deepening the understanding of technology's role in highway safety management. The trend analysis and an in-depth discussion of each technology category alongside the identified research gaps will provide a substantial informative body of knowledge that both benefits current practitioners and directs researchers towards potential future studies. (C) 2019 Periodical Offices of Changan University. Publishing services by Elsevier B.V. on behalf of Owner.
Keywords
Automated Speed Enforcement; Drivers Visual Performance; Rumble Strips; Message Signs; Radar; Management; Adoption; Crashes; Transportation; Work Zone; Worker Safety; Technology Application; Safety Technology; Systematic Review
Aziz, Ahmed M. Abdel. (2021). The Practice of Roadway Safety Management in Public-Private Partnerships. Journal Of Construction Engineering And Management, 147(12).
View Publication
Abstract
As a matter of course, the private party in public-private partnerships (PPPs) assumes the responsibility for roadway safety management (RSM). However, because most PPPs are performance-based, public highway agencies must articulate the specifications and methods they develop to enforce RSM practices. Despite the increased interest in PPPs in recent decades, little has been published on developing and propagating the RSM practices used with this delivery system. To fill this research gap and explore RSM practices in PPPs, this work took a synthesis research approach, using content analysis to critically review and analyze 16 PPP agreements in seven states and provinces leading in PPP contracting in North America. The study discovered several methods and organized them under five mechanisms: Mechanism 1, integrating roadway safety into project performance specifications and initiating new tools such as safety compliance orders; Mechanism 2, imposing nonconformance monetary deductions based on point and classification systems; Mechanism 3, regulating safety payments on the basis of crash statistics; Mechanism 4, promoting safety initiative programs; and Mechanism 5, enforcing administrative countermeasures such as work suspension and default/termination triggers for persistent developer noncompliance. Mechanisms 1 and 5 were the default mechanisms in all toll- and availability-based projects, whereas Mechanism 2 was common in availability-only projects. The research reviewed the RSM packages in the PPP agreements, elucidating the particulars of the RSM mechanisms, highlighting RSM design considerations, presenting implementation guidelines, and articulating research needs. The research results were validated against PPP highways in five other states and provinces. This synthesis research provides highway agencies with an extensive practice review to support RSM package design for future PPP projects.
Keywords
Qualitative Research; Incentives; Public-private Partnerships (ppps); Performance Specifications; Roadway Safety; Payment Mechanisms; Availability Payment; Highways
Firth, Caislin L.; Baquero, Barbara; Berney, Rachel; Hoerster, Katherine D.; Mooney, Stephen J.; Winters, Meghan. (2021). Not Quite a Block Party: Covid-19 Street Reallocation Programs in Seattle, WA and Vancouver, BC. Ssm-population Health, 14.
View Publication
Abstract
The COVID-19 pandemic has exposed mobility inequities within cities. In response, cities are rapidly implementing street reallocation initiatives. These interventions provide space for walking and cycling, however, other mobility needs (e.g., essential workers, deliveries) may be impeded by these reallocation decisions. Informed by mobility justice frameworks, we examined socio-spatial differences in access to street reallocations in Seattle, Washington and Vancouver, British Columbia. In both cities, more interventions occurred in areas where people of color, particularly Black and Indigenous people, lived. In Seattle, more interventions occurred in areas where people with disabilities, on food stamps, and children lived. In Vancouver, more interventions occurred in areas where recent immigrants lived, or where people used public transit or cycled to work. Street reallocations could be opportunities for cities to redress inequities in mobility and access to public spaces. Going forward, it is imperative to monitor how cities use data and welcome communities to redesign these temporary spaces to be corridors for their own mobility.
Keywords
Covid-19; Equity; Inequalities; Built Environment; Mobility; Cities; Mobility Justice
Parsaee, Mojtaba; Demers, Claude M. H.; Potvin, Andre; Lalonde, Jean-Francois; Inanici, Mehlika; Hebert, Marc. (2021). Biophilic Photobiological Adaptive Envelopes for Sub-Arctic Buildings: Exploring Impacts of Window Sizes and Shading Panels’ Color, Reflectance, and Configuration. Solar Energy, 220, 802 – 827.
View Publication
Abstract
Northern building envelopes must provide efficient indoor-outdoor connections based on photobiologicalpsychological needs of occupants for positive relationships with the sub-Arctic nature, particularly daylighting and day/night cycles. Envelope configurations of Northern Canada's buildings have not yet considered such requirements. Potentials of adaptive systems are also still limited. This research develops a fundamental model of adaptive multi-skin envelopes for sub-Arctic buildings based on main biophilic and photobiological indicators which characterize efficient indoor-outdoor connections. Biophilic indicators characterize the state of connections among occupants and outdoors which could stimulate biological-psychological responses. Photobiological indicators determine human-centric lighting adaptation scenarios for hourly lighting qualities and sufficient darkness in relation to local day/night cycles and daylighting. Biophilic performance of the proposed envelope was evaluated through 18 numerical models in terms of impacts of window and shading sizes on occupants' field of views. Photobiological lighting performance was evaluated by experimental methods using 23 physical models at 1:10 scale. Surface characteristics of dynamic shading panels, including color, reflectance, orientation, and inclination, were studied for potential photobiological impacts in terms of melanopic/photopic ratios and color temperatures. Results show that the proposed envelope could (i) offer acceptable direct visual connections with the outdoor nature through efficient window sizes for biophilia, and (ii) modify daylighting qualities to address hourly/seasonal photobiological needs of sub-Arctic occupants. Challenges of the proposed envelope to implement under sub-Arctic climatic conditions are underlined especially in terms of energy issues. The research outcomes help architects and decision-makers to improve occupants' wellbeing and healthy buildings in subArctic climates.
Keywords
Window Shades; Building Envelopes; Reflectance; Color Temperature; Daylighting; Building-integrated Photovoltaic Systems; Daylight; Outdoor Living Spaces; Canada; Adaptive Envelope; Arctic Climate; Biophilic Design; Healthy Building; Photobiological Lighting; Light; Exposure; Stress; Design; Architecture; Sensitivity; Illuminance; Environment; Melatonin; Recovery; Surface Properties; Performance Evaluation; Indicators; Polar Environments; Lighting; Shading; Darkness; Decision Making; Envelopes; Configurations; Buildings; Color; Adaptive Systems; Climatic Conditions; Numerical Models; Mathematical Models; Panels; Night; Climate; Orientation; Arctic Region