Research Product Types: Journal Article
peer-reviewed article in academic journal
Building equity into public park and recreation service investment: A review of public agency approaches
Abstract
In recent decades, academic and professional research has increased understanding of the importance of city and landscape planners engaging with social and environmental justice issues, including contemporary inequities inherent in the planning, distribution, use, and access of public green and open spaces. However, there is a gap between this research centering equity and the planning, development, and implementation rate demonstrated by public agencies. In this article, we examine examples of emerging practice in the public park and recreation sector to understand the strategies and approaches public agencies are taking to provide equitable park and recreation systems. Our research identifies and analyzes 17 examples of North American public park and open space management agencies using equity-based planning frameworks to prioritize park investment and resource distribution. Equity-focused resource analysis is distinct because while it assesses budget and project-based funding distributions, it further incorporates assessments of historical allocations to understand better areas of under-investment and the evolving needs of different communities. As economic inequities become more pronounced, local governments, and other public institutions providing services to populations, are important in helping communities navigate changes. Our findings support the ongoing advancement of equity-driven planning and implementation for public park and recreation agencies by providing practical information on existing approaches to redress the impact of unfair patterns of under-investment.
Greenhouse Gas Emissions Inventory from Roadway Construction: Case Study for the Washington State Department of Transportation
Ashtiani, M. Z., Huang, M., Lewis, M. C., Palmeri, J., & Simonen, K. (2024). Greenhouse Gas Emissions Inventory from Roadway Construction: Case Study for the Washington State Department of Transportation. Transportation Research Record, 0(0). https://doi.org/10.1177/03611981241233278
Abstract
Recent emphasis on actions to reduce greenhouse gas (GHG) emissions has pushed many state departments of transportation (DOTs) to develop carbon accounting practices compatible with their current standard data collection and storage guidelines. Once accurate and reliable accounting of GHG emissions is established, strategies can be formed that could help mitigate the adverse environmental impacts of materials used by state DOTs. To date, the Washington State Department of Transportation (WSDOT) has not conducted comprehensive research on the embodied carbon within its construction material usage (i.e., upstream Scope 3 emissions inventory of procured materials) with most previous carbon accounting practices being focused on Scope 1 and Scope 2 emissions (i.e., the carbon footprint of direct and indirect energy usage). This paper summarizes the results of a life cycle assessment on the agency-wide material procurements and construction operations that emit GHGs at WSDOT as a case study. This study uses several data sources from WSDOT in conjunction with publicly available life cycle emissions factor data to estimate GHG emissions attributed to the materials used to build and maintain roadways under WSDOT’s jurisdiction. Results indicate that upstream Scope 3 emissions for WSDOT as an agency is a significant contributor to its overall GHG emissions inventory. Specifically, between 2017 and 2022, this paper estimates an average annual upstream Scope 3 emissions of 310,000 metric tons of CO2 equivalents, which translates to 56% of the total annual GHG emissions including Scope 1 and 2 emissions.
A-state-of-the-art review of risk management process of green building projects
Wang, L., Chan, D. W. M., Darko, A., & Oluleye, B. I. (2024). A-state-of-the-art review of risk management process of green building projects. Journal of Building Engineering, 86. https://doi.org/10.1016/j.jobe.2024.108738
Abstract
Green buildings (GB) have attracted significant attention for improving sustainability and reducing carbon emissions in the building sector. Like traditional projects, risk management plays a crucial role in green projects. The inadequacy of risk management may lead to diminished workforce performance, delays in project schedules, and poor quality in GB projects. To comprehend risk management in GB projects, it is essential to conduct a state-of-the-art review. This study applied the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) method to select 52 records from the database ‘Scopus’ and ‘Web of Science’ (WoS). A bibliometric analysis indicated that the emphasis in risk management is on the identification and evaluation of risks in engineering projects. Subsequently, a thematic analysis displayed the research topics related to risk management, including (1) methods for identifying risks, (2) risk identification in special conditions, (3) risk assessment with fuzzy sets, social network analysis (SNA), and interpretive structural modeling (ISM), and (4) risk assessment with other technologies. This study focused on the research gaps within the risk management field, specifically in risk identification methods, risk evaluation methods, and risk-mitigating processes. Finally, with research gaps, this study also proposed related research directions for risk management in GB projects.
Assessing the equity and evolution of urban visual perceptual quality with time series street view imagery
Wang, Z., Ito, K., & Biljecki, F. (2024). Assessing the equity and evolution of urban visual perceptual quality with time series street view imagery. Cities, 145, 104704-. https://doi.org/10.1016/j.cities.2023.104704
View Publication
Abstract
The well-being of residents is considerably influenced by the quality of their environment. However, due to the lack of large-scale quantitative and longitudinal evaluation methods, it has been challenging to assess residents' satisfaction and achieve social inclusion goals in neighborhoods. We develop a novel cost-effective method that utilizes time series street view imagery for evaluating and monitoring visual environmental quality in neighborhoods. Unlike most research that relies on site visits or surveys, this study trains a deep learning model with a large-scale dataset to analyze six perception indicators' scores in neighborhoods in different geographies and does so longitudinally thanks to imagery taken over a period of a decade, a novelty in the body of knowledge. Implementing the approach, we examine public housing neighborhoods in Singapore and New York City as case studies. The results demonstrated that temporal imagery can effectively assess spatial equity and monitor the visual environmental qualities of neighborhoods over time, providing a new, comprehensive, and scalable workflow. It can help governments improve policies and make informed decisions on enhancing the design and living standards of urban residential areas, including public housing communities, which may be affected by social stigmatization, and monitor the effectiveness of their policies and actions.
Keywords
Residential quality; Public housing; Environmental quality; Spatial equity; Street view imagery; Visual environment
Editorial: Shaping the future: urban resilience and socio-ecological systems through time
Attila Gyucha, Abigail Derby Lewis, Rodrigo Solinis Casparius, Natalia C. Piland, & Marina Alberti. (2024). Editorial: Shaping the future: urban resilience and socio-ecological systems through time. Frontiers in Ecology and Evolution, 12. https://doi.org/10.3389/fevo.2024.1392723
Health and wellbeing impacts of housing converted from non-residential buildings: A mixed-methods exploratory study in London, UK
Abstract
Housing quality is a determinant of health, wellbeing and inequities. Since 2013, changes to Permitted Development Rights (PDR) allow conversions of non-residential buildings into housing without planning permission in England. We explored the potential health and wellbeing impacts of such ‘PDR housing’ through an online survey and semi-structured interviews in four London boroughs. We found an association between low wellbeing and lack of residential space and accommodation cooling options, fewer local amenities and lower perceived safety. Participants highlighted problems with windows and outdoor space. Poor quality PDR conversions may pose health and wellbeing risks that could be avoided through regulation and enforcement.
Keywords
Housing; Wellbeing; Health; Non-residential conversions; England; Socio-ecological; Adaptive reuse; Urban planning
A Comparative Review of Polymer, Bacterial-based, and Alkali-Activated (also Geopolymer) Binders: Production, Mechanical, Durability, and Environmental impacts (life cycle assessment (LCA))
Nodehi, M., Aguayo, F., Madey, N., & Zhou, L. (2024). A Comparative Review of Polymer, Bacterial-based, and Alkali-Activated (also Geopolymer) Binders: Production, Mechanical, Durability, and Environmental impacts (life cycle assessment (LCA)). Construction & Building Materials, 422. https://doi.org/10.1016/j.conbuildmat.2024.135816
View Publication
Abstract
This review paper presents a comparative evaluation of polymer, bacterial-based, alkali-activated, and geopolymer binders in regard to their production methods, mechanical properties, their environmental/life cycle assessment (LCA), and durability when exposed to deteriorating cycles (such as sulfates, acids, and high temperatures). The significance of this study is to compare the results of over 400 journal papers, which present an in-depth analysis of fresh and hardened state properties of various binders that are advocated in the literature. Historically, Portland cement is generally considered a binder that plays a major role in any cementitious composites because of its high availability, and relatively inexpensive cost. Despite its significant benefits, it is known that the manufacturing process of Portland cement is energy and carbon intensive, and the resulted material often has shortcomings when exposed to deteriorating causes such as sulfates, acids, and high temperatures. However, recent movement toward net-zero as well as ultra-high-performance practices has increased the need for a more sustainable and durable binding system. Based on the result of this paper, each binder presents specific advantages when compared to Portland cement for specific applications that can be a better choice for their ultra-high capabilities and ecological properties. This includes the significantly better performance of alkali-activated binders (specifically geopolymers), under high temperatures, or very rapid strength gain of polymer (e.g., epoxy, polyester, and vinyl ester) binders, making them great alternatives to Portland cement, for rapid repair and rehabilitation purposes. Similarly, bacterial concrete also have certain capabilities such as long term durability and the potential for a continued self-repair or self-healing. In terms of environmental impacts, however, polymer binders are heavily depedant on their source of energy (e.g., petroleum vs. bio-based resins) while alkali-activated concretes and geopolymers have activators' large contributions to overall LCA impact categories. For bacterial binders, the used urea and nutrition can play a key role in their LCA results. Finally, based on the highlighted capabilities of each binder, recommendations on performance-based or hybrid design methods and specifications for an optimized system are also provided. Novel areas in polymer, bacterial-based, alkali-activated, and geopolymer binders are also included.
Keywords
Binding agents; Polymer concreteBacterial (or bio) concrete; Alkali-activated materials and geopolymer; Mechanical and durability properties
Identifying recurrent and persistent landslides using satellite imagery and deep learning: A 30-year analysis of the Himalaya
Tzu-Hsin Karen Chen, Mark E. Kincey, Nick J. Rosser, Karen C. Seto, Identifying recurrent and persistent landslides using satellite imagery and deep learning: A 30-year analysis of the Himalaya, Science of The Total Environment, Volume 922, 2024, 171161, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2024.171161.
Abstract
This paper presents a remote sensing-based method to efficiently generate multi-temporal landslide inventories and identify recurrent and persistent landslides. We used free data from Landsat, nighttime lights, digital elevation models, and a convolutional neural network model to develop the first multi-decadal inventory of landslides across the Himalaya, spanning from 1992 to 2021. The model successfully delineated >265,000 landslides, accurately identifying 83 % of manually mapped landslide areas and 94 % of reported landslide events in the region. Surprisingly, only 14 % of landslide areas each year were first occurrences, 55–83 % of landslide areas were persistent and 3–24 % had reactivated. On average, a landslide-affected pixel persisted for 4.7 years before recovery, a duration shorter than findings from small-scale studies following a major earthquake event. Among the recovered areas, 50 % of them experienced recurrent landslides after an average of five years. In fact, 22 % of landslide areas in the Himalaya experienced at least three episodes of landslides within 30 years. Disparities in landslide persistence across the Himalaya were pronounced, with an average recovery time of 6 years for Western India and Nepal, compared to 3 years for Bhutan and Eastern India. Slope and elevation emerged as significant controls of persistent and recurrent landslides. Road construction, afforestation policies, and seismic and monsoon activities were related to changes in landslide patterns in the Himalaya.
Keywords
Landslide inventory; Landslide evolution; Vegetation recovery; Multi-temporalSpatiotemporal analysis; Machine learning
Automating building environmental assessment: A systematic review and future research directions
T.A.D.K. Jayasanka, Amos Darko, D.J. Edwards, Albert P.C. Chan, Farzad Jalaei, Automating building environmental assessment: A systematic review and future research directions, Environmental Impact Assessment Review, Volume 106, 2024, 107465, ISSN 0195-9255, https://doi.org/10.1016/j.eiar.2024.107465.
Abstract
Building environmental assessment (BEA) is critical to improving sustainability. However, the BEA process is inefficient, costly, and often inaccurate. Because automation has the potential to enhance the efficiency and accuracy of the BEA process, studies have focused on automating BEA (ABEA). Updated until now, a comprehensive analysis of prevailing literature on ABEA remains absent. This study conducts the first comprehensive systematic analysis appraising the state-of-the-art of research on ABEA. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guided to systematically analyse 91 relevant studies. Results uncover that only 29.7% of BEA systems worldwide have automated their processes, with the US LEED residing at the vanguard of automation efforts. The New Buildings scheme was mostly focused on, while largely ignoring other schemes, e.g., Existing Buildings. Five key digital approaches to ABEA were revealed, namely building information modelling (BIM) and plug-in software, BIM-ontology, data mining and machine learning, cloud-BIM, and digital twin-based approaches. Based on identified gaps, future research directions are proposed, specifically: using data mining and machine learning models for ABEA; development of a holistic cloud-based approach for real-time BEA; and digital twin for dynamic BEA. This study generates a deeper understanding of ABEA and its theoretical implications, such as major constructs and emerging perspectives, constitute a basis for holistic, and innovation in, BEA.