Skip to content

Vince Wang

Ruoniu (Vince) Wang is an Assistant Professor in the Runstad Department of Real Estate in the College of Built Environments at the University of Washington. He studies spatial justice and inclusive communities, including their impacts reflected in the built environment, human behaviors, and policy interventions. Vince joined the University of Washington after serving six years as the research manager and director in a national non-profit organization Grounded Solutions Network. He has designed and conducted a U.S. Census of inclusionary housing policies, a U.S. census of community land trusts, and a national performance evaluation of shared equity homeownership programs. His research expands to policy evaluation for the two largest federal assisted housing rental programs in the U.S.: the Low-Income Housing Tax Credit program and the Housing Choice Voucher program. Vince grounds his research with applied tools to democratize data for low-income communities.

Lingzi Wu

Lingzi Wu is an Assistant Professor with the Department of Construction Management (CM) at the University of Washington (UW). Prior to joining UW in September 2022, Dr. Wu served as a postdoctoral fellow in the Department of Civil and Environmental Engineering at University of Alberta, where she received her MSc and PhD in Construction Engineering and Management in 2013 and 2020 respectively. Prior to her PhD, Dr. Wu worked in the industrial construction sector as a project coordinator with PCL Industrial Management from 2013 to 2017.

An interdisciplinary scholar focused on advancing digital transformation in construction, Dr. Wu’s current research interests include (1) integration of advanced data analytics and complex system modeling to enhance construction practices and (2) development of human-in-the-loop decision support systems to improve construction performance (e.g., sustainability and safety). Dr. Wu has published 10 papers in top journals and conference proceedings, including the Journal of Construction Engineering and Management, Journal of Computing in Civil Engineering, and Automation in Construction. Her research and academic excellence has received notable recognition, including a “Best Paper Award” at the 17th International Conference on Modeling and Applied Simulation, and the outstanding reviewer award from the Journal of Construction Engineering and Management.

As an educator and mentor, Dr. Wu aims to create an inclusive, innovative, and interactive learning environment where students develop personal, technical, and transferable skills to grow today, tomorrow, and into the future.

Celina Balderas Guzmán

Celina Balderas Guzmán, PhD, is Assistant Professor in the Department of Landscape Architecture. Dr. Balderas’ research spans environmental planning, design, and science and focuses on climate adaptation to sea level rise on the coast and urban stormwater inland. On the coast, her work demonstrates specific ways that the climate adaptation actions of humans and adaptation of ecosystems are interdependent. Her work explores how these interdependencies can be maladaptive by shifting vulnerabilities to other humans or non-humans, or synergistic. Using ecological modeling, she has explored these interdependencies focusing on coastal wetlands as nature-based solutions. Her work informs cross-sectoral adaptation planning at a regional scale.

Inland, Dr. Balderas studies urban stormwater through a social-ecological lens. Using data science and case studies, her work investigates the relationship between stormwater pollution and the social, urban form, and land cover characteristics of watersheds. In past research, she developed new typologies of stormwater wetlands based on lab testing in collaboration with environmental engineers. The designs closely integrated hydraulic performance, ecological potential, and recreational opportunities into one form.

Her research has been funded by major institutions such as the National Science Foundation, National Socio-Environmental Synthesis Center, UC Berkeley, and the MIT Abdul Latif Jameel Water and Food Systems Lab. She has a PhD in the Department of Landscape Architecture and Environmental Planning from the University of California, Berkeley. Previously, she obtained masters degrees in urban planning and urban design, as well as an undergraduate degree in architecture all from MIT.

Where to Focus for Successful Adoption of Building Information Modeling within Organization

Won, Jongsung; Lee, Ghang; Dossick, Carrie; Messner, John. (2013). Where to Focus for Successful Adoption of Building Information Modeling within Organization. Journal Of Construction Engineering And Management, 139(11).

View Publication

Abstract

Suggestions abound for successful adoption of building information modeling (BIM); however, a company with limited resources cannot adopt them all. The factors that have top management priority for successful accomplishment of a task are termed critical success factors (CSFs). This paper aims to derive the CSFs for four questions commonly asked by companies in the first wave of BIM adoption: (1)What are the CSFs for adopting BIM in a company? (2)What are the CSFs for selecting projects to deploy BIM? (3)What are the CSFs for selecting BIM services? (4)What are the CSFs for selecting company-appropriate BIM software applications? A list of consideration factors was collected for each question, based on a literature review, and then refined through face-to-face interviews based on experiences of BIM experts. An international survey was conducted with leading BIM experts. From the 206 distributed surveys, 52 responses from four continents were collected. This study used quantitative data analysis to derive a manageable number (4-10) of CSFs for each category from dozens of anecdotal consideration factors. The derived CSFs are expected to be used as efficient metrics for evaluating and managing the level of BIM adoption and as a basis for developing BIM evaluation models in the future.

Keywords

Architectural Cad; Building Information Modeling; Bim; Critical Success Factors; Csf; Management; Building Information Models; Organizations; Computer Software; Building Information Modeling (bim); Critical Success Factor (csf); Organizational Strategy; Bim Software Application; Bim Service; Bim-assisted Project; Information Technologies

Understanding The Social Contagion Effect Of Safety Violations Within A Construction Crew: A Hybrid Approach Using System Dynamics And Agent-based Modeling

Liang, Huakang; Lin, Ken-yu; Zhang, Shoujian. (2018). Understanding The Social Contagion Effect Of Safety Violations Within A Construction Crew: A Hybrid Approach Using System Dynamics And Agent-based Modeling. International Journal Of Environmental Research And Public Health, 15(12).

View Publication

Abstract

Previous research has recognized the importance of eliminating safety violations in the context of a social group. However, the social contagion effect of safety violations within a construction crew has not been sufficiently understood. To address this deficiency, this research aims to develop a hybrid simulation approach to look into the cognitive, social, and organizational aspects that can determine the social contagion effect of safety violations within a construction crew. The hybrid approach integrates System Dynamics (SD) and Agent-based Modeling (ABM) to better represent the real world. Our findings show that different interventions should be employed for different work environments. Specifically, social interactions play a critical role at the modest hazard levels because workers in this situation may encounter more ambiguity or uncertainty. Interventions related to decreasing the contagion probability and the safety-productivity tradeoff should be given priority. For the low hazard situation, highly intensive management strategies are required before the occurrence of injuries or accidents. In contrast, for the high hazard situation, highly intensive proactive safety strategies should be supplemented by other interventions (e.g., a high safety goal) to further control safety violations. Therefore, this research provides a practical framework to examine how specific accident prevention measures, which interact with workers or environmental characteristics (i.e., the hazard level), can influence the social contagion effect of safety violations.

Keywords

Risk-taking; Coworker Support; Employee Safety; Job Demands; Work Groups; Behavior; Climate; Impact; Performance; Simulation; Social Contagion Effect; Routine Safety Violations; Situational Safety Violations; System Dynamics; Agent-based Simulation; Research; Violations; Modelling; Accident Prevention; Social Factors; Safety; Organizational Aspects; Occupational Safety; Construction; Influence; Construction Accidents & Safety; Workers; Safety Management; Information Processing; Construction Industry; Hybrid Systems; Social Interactions; Cognitive Ability; Human Error; Accident Investigations

Geographic Ecological Momentary Assessment Methods to Examine Spatio-temporal Exposures Associated with Marijuana Use Among Young Adults: A Pilot Study

Rhew, Isaac C.; Hurvitz, Philip M.; Lyles-riebli, Rose; Lee, Christine M. (2022). Geographic Ecological Momentary Assessment Methods to Examine Spatio-temporal Exposures Associated with Marijuana Use Among Young Adults: A Pilot Study. Spatial And Spatio-temporal Epidemiology, 41.

View Publication

Abstract

Background: This study demonstrates the use of geographic ecological momentary assessment (GEMA) methods among young adult marijuana users. Method: Participants were 14 current marijuana users ages 21-27 living in Greater Seattle, Washington. They completed brief surveys four times per day for 14 consecutive days, including measures of marijuana use and desire to use. They also carried a GPS data logger that tracked their spatial movements over time. Results: Participants completed 80.1% of possible EMA surveys. Using the GPS data, we calculated daily number of exposures to (i.e., within 100-m of) marijuana retail outlets (mean = 3.9 times per day; SD = 4.4) and time spent per day in high poverty census tracts (mean = 7.3 h per day in high poverty census tracts; SD = 5.1). Conclusions: GEMA may be a promising approach for studying the role spatio-temporal factors play in marijuana use and related factors.

Keywords

Geographic Ecological Momentary Assessment; Spatio-temporal Factors; Marijuana; Young Adults; Geographic Information System; Poverty; Substance Use; Alcohol; Tracking

How Do Built-Environment Factors Affect Travel Behavior? A Spatial Analysis at Different Geographic Scales

Hong, Jinhyun; Shen, Qing; Zhang, Lei. (2014). How Do Built-Environment Factors Affect Travel Behavior? A Spatial Analysis at Different Geographic Scales. Transportation, 41(3), 419 – 440.

View Publication

Abstract

Much of the literature shows that a compact city with well-mixed land use tends to produce lower vehicle miles traveled (VMT), and consequently lower energy consumption and less emissions. However, a significant portion of the literature indicates that the built environment only generates some minor-if any-influence on travel behavior. Through the literature review, we identify four major methodological problems that may have resulted in these conflicting conclusions: self-selection, spatial autocorrelation, inter-trip dependency, and geographic scale. Various approaches have been developed to resolve each of these issues separately, but few efforts have been made to reexamine the built environment-travel behavior relationship by considering these methodological issues simultaneously. The objective of this paper is twofold: (1) to better understand the existing methodological gaps, and (2) to reexamine the effects of built-environment factors on transportation by employing a framework that incorporates recently developed methodological approaches. Using the Seattle metropolitan region as our study area, the 2006 Household Activity Survey and the 2005 parcel and building data are used in our analysis. The research employs Bayesian hierarchical models with built-environment factors measured at different geographic scales. Spatial random effects based on a conditional autoregressive specification are incorporated in the hierarchical model framework to account for spatial contiguity among Traffic Analysis Zones. Our findings indicate that land use factors have highly significant effects on VMT even after controlling for travel attitude and spatial autocorrelation. In addition, our analyses suggest that some of these effects may translate into different empirical results depending on geographic scales and tour types.

Keywords

Land-use; Urban Form; Multilevel Models; Physical-activity; Neighborhood; Choice; Impact; Specification; Accessibility; Causation; Built Environment; Travel Behavior; Self-selection; Spatial Autocorrelation; Bayesian Hierarchical Model

The Impact Of Coworkers’ Safety Violations On An Individual Worker: A Social Contagion Effect Within The Construction Crew

Liang, Huakang; Lin, Ken-yu; Zhang, Shoujian; Su, Yikun. (2018). The Impact Of Coworkers’ Safety Violations On An Individual Worker: A Social Contagion Effect Within The Construction Crew. International Journal Of Environmental Research And Public Health, 15(4).

View Publication

Abstract

This research developed and tested a model of the social contagion effect of coworkers' safety violations on individual workers within construction crews. Both situational and routine safety violations were considered in this model. Empirical data were collected from 345 construction workers in China using a detailed questionnaire. The results showed that both types of safety violations made by coworkers were significantly related to individuals' perceived social support and production pressure. Individuals' attitudinal ambivalence toward safety compliance mediated the relationships between perceived social support and production pressure and both types of individuals' safety violations. However, safety motivation only mediated the effects of perceived social support and production pressure on individuals' situational safety violations. Further, this research supported the differences between situational and routine safety violations. Specifically, we found that individuals were more likely to imitate coworkers' routine safety violations than their situational safety violations. Coworkers' situational safety violations had an indirect effect on individuals' situational safety violations mainly through perceived social support and safety motivation. By contrast, coworkers' routine safety violations had an indirect effect on individuals' routine safety violations mainly through perceived production pressure and attitudinal ambivalence. Finally, the theoretical and practical implications, research limitations, and future directions were discussed.

Keywords

Health-care Settings; Job Demands; Attitudinal Ambivalence; Industry Development; Workplace Safety; Behavior; Climate; Model; Risk; Employee; Social Contagion; Situational Safety Violations; Routine Safety Violations; Social Learning; Social Information Processing

Reinforcement Learning Approach To Scheduling Of Precast Concrete Production

Kim, Taehoon; Kim, Yong-woo; Lee, Dongmin; Kim, Minju. (2022). Reinforcement Learning Approach To Scheduling Of Precast Concrete Production. Journal Of Cleaner Production, 336.

View Publication

Abstract

The production scheduling of precast concrete (PC) is essential for successfully completing PC construction projects. The dispatching rules, widely used in practice, have the limitation that the best rule differs according to the shop conditions. In addition, mathematical programming and the metaheuristic approach, which would improve performance, entail more computational time with increasing problem size, let alone its models being revised as the problem size changes. This study proposes a PC production scheduling model based on a reinforcement learning approach, which has the advantages of a general capacity to solve various problem conditions with fast computation time and good performance in real-time. The experimental study shows that the proposed model outperformed other methods by 4-12% of the total tardiness and showed an average winning rate of 77.0%. The proposed model could contribute to the successful completion of off-site construction projects by supporting the stable progress of PC construction.

Keywords

Precast Concrete; Reinforcement Learning; Deep Q -network; Production Scheduling; Minimize; Model

Continuous Quality Improvement Techniques for Data Collection in Asset Management Systems

Migliaccio, G. C.; Bogus, Susan M.; Cordova-Alvidrez, A. A. (2014). Continuous Quality Improvement Techniques for Data Collection in Asset Management Systems. Journal Of Construction Engineering And Management, 140(4).

View Publication

Abstract

Transportation infrastructure assets are among the largest investments made by governmental agencies. These agencies use data on asset conditions to make decisions regarding the timing of maintenance activities, the type of treatment, and the resources to employ. To collect and record these data, agencies often utilize trained evaluators who assess the asset either on site or by analyzing photos and/or videos. These visual assessments are widely used to evaluate conditions of various assets, including pavement surface distresses. This paper describes a Data Quality Assessment & Improvement Framework (DQAIF) to measure and improve the performance of multiple evaluators of pavement distresses by controlling for subjective judgment by the individual evaluators. The DQAIF is based on a continuous quality improvement cyclic process that is based on the following main components: (1)assessment of the consistency over timeperformed using linear regression analysis; (2)assessment of the agreement between evaluatorsperformed using inter-rater agreement analysis; and (3)implementation of management practices to improve the results shown by the assessments. A large and comprehensive case study was employed to describe, refine, and validate the framework. When the DQAIF is applied to pavement distress data collected on site by different evaluators, the results show that it is an effective method for quickly identifying and solving data collection issues. The benefit of this framework is that the analyses employed produce performance measures during the data collection process, thus minimizing the risk of subjectivity and suggesting timely corrective actions. The DQAIF can be used as part of an asset management program, or in any engineering program in which the data collected are subjected to the judgment of the individuals performing the evaluation. The process could also be adapted for assessing performance of automated distress data acquisition systems.

Keywords

Asset Management; Civil Engineering Computing; Data Acquisition; Decision Making; Inspection; Maintenance Engineering; Quality Control; Regression Analysis; Roads; Transportation; Continuous Quality Improvement Techniques; Asset Management System; Governmental Agencies; Transportation Infrastructure Assets; Maintenance Activities; Visual Assessment; Pavement Surface Distresses; Data Quality Assessment & Improvement Framework; Dqaif; Linear Regression Analysis; Interrater Agreement Analysis; Data Collection Process; Automated Distress Data Acquisition System; Manual Pavement Distress; Pavement Management; Quantitative Analysis; Data Collection; Assets; Reliability; Case Studies