Skip to content

Energy Efficiency Retrofitting of Existing Building Stock for Net Zero

Tetteh, M. O., Darko, A., Boateng, E. B., & Chan, A. P. C. (2024). Energy Efficiency Retrofitting of Existing Building Stock for Net Zero. In Rethinking Pathways to a Sustainable Built Environment (pp. 142–158). Routledge. https://doi.org/10.1201/9781003317890-9

View Publication

Abstract

Existing buildings’ retrofits improve energy efficiency and are a crucial part of global decarbonization plan. There is a need for a better understanding of public sentiment toward energy efficiency retrofitting of existing buildings (EEREB) to effectively promote its widespread adoption through policy interventions. Currently, there is a lack of comprehensive studies that assess the general public's sentiments toward EEREB. This chapter utilizes social media data to assess the overall public's sentiments of EEREB. Sentiment analysis was used to analyze a total of 3,306 comments from the social media platform YouTube. The concerns and perceptions of the public were analyzed using a Latent Dirichlet Allocation model, which identified nine main themes. These themes include ventilation, energy efficiency, indoor environment quality, comfort and occupant behavior, cost considerations, community engagement, technology usage, implementation knowledge, and social impact. The public expressed stronger positive sentiments, with about 64% reporting favorable views of EEREB and acknowledging its benefits. In addition, interesting patterns of perceptions shaped by a combination of generic and local-specific factors were identified. This chapter enhances the understanding of the general public's needs, concerns, and views on EEREB. Additionally, it could provide valuable insights for policymakers to refine or develop more effective actions in support of EEREB.

Green Finance: A Tool for Financing Green Building Projects

Debrah, C., Chan, A. P. C., Darko, A., Owusu-Manu, D.-G., & Ohene, E. (2024). Green Finance. In Rethinking Pathways to a Sustainable Built Environment (pp. 277–302). Routledge. https://doi.org/10.1201/9781003317890-18

View Publication

Abstract

Green building is an “unheralded hero” in the global emissions fight. Its business case has raised demand from several stakeholders. It is seen as a multitrillion-dollar business opportunity of the next decade, leading to increased green finance (GF) investment for green building. GF is accepted as a tool to finance climate change mitigation and adaptation actions, including buildings and construction. To promote GF for green building, collaboration efforts between governments, businesses, investors, and the public are key. This chapter presents the evolution of GF for green building, an overview of the implementation and its potentials, with a focus on the role of stakeholders, policies, regulations, and incentives. Typologies of GF for green building and some examples of success stories are discussed. Other related issues such as green standards, green certifications, and green indices are examined. This chapter facilitates a systematic and comprehensive understanding of the subject. Overall, it summarises the development of GF in this field and the consequent impact on climate action.

Automated daily report generation from construction videos using ChatGPT and computer vision

Xiao, B., Wang, Y., Zhang, Y., Chen, C., & Darko, A. (2024). Automated daily report generation from construction videos using ChatGPT and computer vision. Automation in Construction, 168, 105874-. https://doi.org/10.1016/j.autcon.2024.105874

View Publication

Abstract

Daily reports are important in construction management, informing project teams about status, enabling timely resolutions of delays and budget issues, and serving as official records for disputes and litigation. However, current practices are manual and time-consuming, requiring engineers to physically visit sites for observations. To fill this gap, this paper proposes an automated framework to generate daily construction reports from on-site videos by integrating ChatGPT and computer vision (CV)-based methods. The framework utilizes CV methods to analyze video footage and extract relevant productivity and activity information, which is then fed into ChatGPT using proper prompts to generate daily reports. A web application is developed to implement and validate the framework on a real construction site in Hong Kong, generating daily reports over a month. This research enhances construction management by significantly reducing documentation efforts through generative artificial intelligence, with potential applications in jobsite safety management, quality reporting, and stakeholder communication.

Keywords

Construction daily report generation; Computer vision; ChatGPT; Construction management; Project documentation

AIAU hosts webinar about the Building Owners Assessment Tool (BOAT) developed by Carrie Sturts Dossick and team

The American Institute of Architects is hosting a webinar on their online learning platform AIAU, about the Building Owners Assessment Tool (BOAT) developed by Carrie Sturts Dossick along with her project team members. Other course instructors are Markku Allison, AIA; Greg Gidez, AIA, FDBIA; and Laura F. Stagner, FAIA, DBIA, PMP. The course was recorded live in October 2024 and is available as a resource on the AIAU website until 2027. View the course on the AIAU website here.

Rapid Assessment of Sulfate Resistance in Mortar and Concrete

Mousavinezhad, S., Toledo, W. K., Newtson, C. M., & Aguayo, F. (2024). Rapid Assessment of Sulfate Resistance in Mortar and Concrete. Materials, 17(19), 4678-. https://doi.org/10.3390/ma17194678

View Publication

Abstract

Extensive research has been conducted on the sulfate attack of concrete structures; however, the need to adopt the use of more sustainable materials is driving a need for a quicker test method to assess sulfate resistance. This work presents accelerated methods that can reduce the time required for assessing the sulfate resistance of mixtures by 70%. Class F fly ash has historically been used in concrete mixtures to improve sulfate resistance. However, environmental considerations and the evolving energy industry have decreased its availability, requiring the identification of economically viable and environmentally friendly alternatives to fly ash. Another challenge in addressing sulfate attack durability issues in concrete is that the standard sulfate attack test (ASTM C1012) is time-consuming and designed for only standard mortars (not concrete mixtures). To expedite the testing process, accelerated testing methods for both mortar and concrete mixtures were adopted from previous work to further the development of the accelerated tests and to assess the feasibility of testing the sulfate resistance of mortar and concrete mixtures rapidly. This study also established criteria for interpreting sulfate resistance for each of the test methods used in this work. A total of 14 mortar mixtures and four concrete mixtures using two types of Portland cement (Type I and Type I/II) and various supplementary cementitious materials (SCMs) were evaluated in this study. The accelerated testing methods significantly reduced the evaluation time from 12 months to 21 days for mortar mixtures and from 6 months to 56 days for concrete mixtures. The proposed interpretation method for mortar accelerated test results showed acceptable consistency with the ACI 318-19 interpretations for ASTM C1012 results. The interpretation methods proposed for the two concrete sulfate attack tests demonstrated excellent consistency with the ASTM C1012 results from mortar mixtures with the same cementitious materials combinations. Metakaolin was shown to improve sulfate resistance for both mortar and concrete mixtures, while silica fume and natural pozzolan had a limited impact. Using 15% metakaolin in mortar or concrete mixtures with Type I/II cement provided the best sulfate resistance.

Keywords

accelerated test method; concrete; metakaolin; mortar; natural pozzolan; sulfate attack

Carrie Sturts Dossick featured on Building Innovation: The Podcast

Dr. Carrie Sturts Dossick, Associate Dean for Research, and Professor in the department of Construction Management has been featured on the Building Innovation: The Podcast. The podcast episode is Season 2, Episode 1, and is part one of the NBIMS-US™ Series, and discusses the new module for Project BIM Requirements. Listen to the Podcast here: https://www.nibs.org/building-innovation-podcast  

Integrated Design Lab releases their 2023-2024 Annual Report

The Integrated Design Lab has released their 2023-2o24 Annual Report, available here. The Integrated Design Lab is lead by Christopher Meek and Heather Burpee. Christopher Meek is a Professor in the CBE Department of Architecture, and Director of the Integrated Design Lab. Heather Burpee is a Research Professor in the CBE Department of Architecture, and Director of Education and Outreach for the Integrated Design Lab.

Evaluating carbonation resistance and microstructural behaviors of calcium sulfoaluminate cement concrete incorporating fly ash and limestone powder

Mohammed, T., Torres, A., Aguayo, F., & Okechi, I. K. (2024). Evaluating carbonation resistance and microstructural behaviors of calcium sulfoaluminate cement concrete incorporating fly ash and limestone powder. Construction & Building Materials, 442, 137551-. https://doi.org/10.1016/j.conbuildmat.2024.137551

View Publication

Abstract

This study investigates the effects of accelerated carbonation on calcium sulfoaluminate (CSA) cement concrete, focusing on mixtures enhanced with 20 % fly ash (FA), 20 % remediated fly ash (RF), 15 % limestone powder (LP), and a combination of 20 % FA with 15 % LP (35 %). The study further evaluates the mechanical properties including compressive strength, splitting tensile strength, elastic modulus, along with drying shrinkage and bulk resistivity. To delve into the microstructural characteristics of moist curing versus carbonation exposure on the CSA cement system, X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were employed, particularly analyzing phase assemblage changes. The results show that the addition of FA reduced the carbonation depth in concrete mixtures over time (105 days). However, LP and the combination of FA and LP presented mixed effects. The microstructural analysis highlighted ettringite as the predominant phase in samples moist cured for 3 days. In contrast, carbonation-cured samples were characterized by different calcium carbonate (CaCO3) polymorphs alongside aluminum hydroxide (Al(OH)3) and residual ye'elimite, with the formation of low-pH carbonic acid facilitating the conversion of ettringite into CaCO3. This study highlights the impact of different SCMs on the durability and microstructural characteristics of CSA cement concrete, underscoring the interplay between curing methods, effects of SCM, and carbonation processes.

Keywords

Calcium sulfoaluminate cement (CSA); Carbonation; Limestone powder; Fly Ash; Microstructural analysis

Pacific Coast Architecture Database (PCAD)

PCAD archives a range of information on the buildings and architects of California, Oregon and Washington. Also included are professionals in other fields who have made an impact on the built environment, such as landscape architects, interior designers, engineers, urban planners, developers, and building contractors. Building records are tied to those of their creators (when known) and include historical and geographical information and images. Bibliographical information, such as magazine and book citations and web sites, has also been linked for creators and their partnerships and structures.

View Resource