Skip to content

Comparative Environmental Analysis of Seismic Damage in Buildings

Huang, M.; Simonen, K. (2020). Comparative Environmental Analysis of Seismic Damage in Buildings. Journal Of Structural Engineering, 146(2).

View Publication

Abstract

In studying the environmental impacts of buildings, earthquake hazards are rarely considered, but their environmental impacts can be significant. This case study paper demonstrates how the US Federal Emergency Management Agency's Performance Assessment Calculation Tool (PACT) can be used to analyze the environmental impacts of buildings using probabilistic seismic hazard assessment. PACT was used to evaluate 10 case study buildings that varied by five types of lateral systems and two risk categories. For each building, PACT generated 1,000 realizations at five earthquake intensities. The resulting environmental impacts were analyzed according to their distribution, median, and average values, and the differences among building component types, risk categories, and lateral force-resisting systems were explored. In this study, building components that were categorized under Exterior Enclosures, Interior Finishes, and Heating, Ventilation, and Air-Conditioning (HVAC) produced notably higher environmental impacts in response to seismic damage, and their vulnerability to displacement- or acceleration-induced damage could be attributed to the characteristics of the lateral systems. Although these observations are notable, they should not be taken as universally applicable to all buildings. Instead, these findings exemplify how the environmental impact results from PACT can be analyzed and interpreted to address both the seismic and environmental aspects of building design. (C) 2019 American Society of Civil Engineers.

Keywords

Impact

Disruptive Information Exchange Requirements in Construction Projects: Perception and Response Patterns

Abdirad, Hamid; Dossick, Carrie S.; Johnson, Brian R.; Migliaccio, Giovanni. (2021). Disruptive Information Exchange Requirements in Construction Projects: Perception and Response Patterns. Building Research And Information, 49(2), 161 – 178.

View Publication

Abstract

The current proliferation of custom information exchange initiatives in projects disrupts information exchange routines of design and construction firms. This paper investigates how firms perceive, interpret, and act upon information exchange requirements that do not align with their existing routines. This case study examines a construction project for which the owner specified highly custom requirements for digital production and delivery of project submittals. Using ethnographic methods, the project parties' existing routines and their patterns of perceiving and responding to the requirements were identified. These patterns showed that the parties perceived disruptions to the existing dispositions and rules that guided their routines and shaped their performance across projects. The project parties used a combination of deductive, inductive, and abductive reasoning mechanisms to interpret the requirements, expose the inefficiencies associated with their workflows, and set new ground rules for action. The grounded propositions in this study hold that the limited opportunities for inductive reasoning and reflective assessment of workflows in projects can press project parties into identifying alternative workflows through cognitive search and abductive reasoning. This, in turn, results in highly situated, temporary, and fragmented workflows that are not durable and effective to contribute to refinement of existing information exchange routines.

Keywords

Construction Industry; Abductive Reasoning; Cognitive Searches; Construction Projects; Design And Construction; Ethnographic Methods; Inductive Reasoning; Information Exchange Requirements; Information Exchanges; Organizational Routines; Risk; Bim; Implementation; Innovation; Information Exchange; Disruptive Requirements; Routines; Construction Companies; Cognitive Ability; Project Engineering; Reasoning

A Three-Dimensional Approach to the Extended Limit Analysis of Reinforced Masonry

Roca, Pere; Liew, Andrew; Block, Philippe; Lopez, David Lopez; Echenagucia, Tomás Méndez; Van Mele, Tom. (2022). A Three-Dimensional Approach to the Extended Limit Analysis of Reinforced Masonry. Structures, 35, 1062 – 1077.

View Publication

Abstract

The Extended Limit Analysis of Reinforced Masonry (ELARM) is a simple and user-friendly method for the design and structural analysis of singly-curved, reinforced tile vaults [1]. It is based on limit analysis but takes into account the reinforcement's contribution to the composite cross-section's bending capacity.& nbsp;A three-dimensional approach to ELARM is presented in this paper. The theoretical framework to understand the implications and limitations of extending ELARM to fully 3D structures is described, together with the strategies to carry out the leap from 2D to 3D. This extension is a lower-bound approach for the design of reinforced masonry, reinforced concrete and concrete-masonry composite shells and the assessment of their strength and stability against external loading.& nbsp;The new, extended method is implemented computationally to speed up the iterative processes, provide quick structural feedback, offer immediate results and allow for user-interactive form-finding and optimisation procedures. Different applications of the developed tool are described through the presentation of examples, including reinforcement optimisation, a form-finding process and a case with a shape beyond funicular geometry.

Keywords

Tile Vault; Masonry; Reinforced Brick; Formwork; Concrete Shells; Limit Analysis; Thrust Network Analysis; Extended Limit Analysis Of Reinforced Masonry; Tile Vaults

Occupant Perceptions of an Indoor Thermal Environment in a Naturally Ventilated Building

Ilyas, Salman; Emery, Ashley; Heerwagen, Judith; Heerwagen, Dean. (2012). Occupant Perceptions of an Indoor Thermal Environment in a Naturally Ventilated Building. Ashrae Transactions, 118(2), 114 – 121.

View Publication

Abstract

A strong emphasis is currently being placed on the use of natural ventilation as a means for providing a safe and healthful indoor environment as part of green building programs. There has been an increasing interest in developing natural ventilation design strategies that can furnish adequate fresh air to the building interior and simultaneously control the indoor air quality effectively, while providing significant energy savings. In naturally ventilated spaces, furnishing a suitable air exchange rate between the building exterior and interior can create a thermally comfortable and healthy indoor environment. However, the air exchange must occur such that the indoor air quality of the building is not compromised and thermally comfortable conditions for the occupants can be maintained. Architecture Hall is a recently renovated, naturally ventilated building located on the University of Washington campus in Seattle. The natural ventilation in this building was evaluated using a variety of experimental techniques, which included measurement of carbon dioxide (CO2) levels, air exchange rates and air velocities. High CO2 concentrations are a good indicator of inadequate ventilation rates and poor air movement in a space. Hence, a number of standards and certification programs specify the use of outdoor air monitoring based on CO2 concentrations in an occupied space. Occupant surveys, based on a U.S. EPA study, were also administered to understand and analyse occupant perceptions about the indoor thermal environment and to identify the prevalence of any building related illness symptoms. The discussion in this paper will focus on the findings of the occupant surveys and how they relate to the measured CO2 levels, air exchange rates and air velocities in the naturally ventilated spaces. The natural ventilation function in Architecture Hall is largely climate driven. For the period of November through March particularly, outside temperatures are quite low and windows are seldom opened by the occupants, in spite of a large number of occupants being dissatisfied with the indoor environmental quality. Consequently, CO2 concentrations consistently exceed acceptable levels and very little air movement is recorded. [ABSTRACT FROM AUTHOR]; Copyright of ASHRAE Transactions is the property of ASHRAE and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Keywords

Thermal Comfort; Natural Ventilation; Energy Consumption Of Buildings; Indoor Air Quality; Heat Exchangers; Carbon Dioxide

Empirical Assessment of Spatial Prediction Methods for Location Cost-Adjustment Factors

Migliaccio, Giovanni C.; Guindani, Michele; D’Incognito, Maria; Zhang, Linlin. (2013). Empirical Assessment of Spatial Prediction Methods for Location Cost-Adjustment Factors. Journal Of Construction Engineering & Management, 139(7), 858 – 869.

View Publication

Abstract

In the feasibility stage of a project, location cost-adjustment factors (LCAFs) are commonly used to perform quick order-of-magnitude estimates. Nowadays, numerous LCAF data sets are available in North America, but they do not include all locations. Hence, LCAFs for unsampled locations need to be inferred through spatial interpolation or prediction methods. Using a commonly used set of LCAFs, this paper aims to test the accuracy of various spatial prediction methods and spatial interpolation methods in estimating LCAF values for unsampled locations. Between the two regression-based prediction models selected for the study, geographically weighted regression analysis (GWR) resulted the most appropriate way to model the city cost index as a function of multiple covariates. As a direct consequence of its spatial nonstationarity, the influence of each single covariate differed from state to state. In addition, this paper includes a first attempt to determine if the observed variability in cost index values could be at least partially explained by independent socioeconomic variables. (C) 2013 American Society of Civil Engineers.

Keywords

Construction Industry; Interpolation; Regression Analysis; Socio-economic Effects; Spatial Prediction Methods; Location Cost-adjustment Factors; Empirical Assessment; Lcaf; Order-of-magnitude Estimates; North America; Unsampled Locations; Spatial Interpolation Methods; Geographically Weighted Regression Analysis; Gwr; Independent Socioeconomic Variables; Inflation; Indexes; Estimation; Geostatistics; Construction Costs; Planning; Budgeting

Architecture During Wartime: The Mostra d’Oltremare and Esposizione Universale di Roma

McLaren, Brian L. (2014). Architecture During Wartime: The Mostra d’Oltremare and Esposizione Universale di Roma. Architectural Theory Review, 19(3), 299 – 318.

View Publication

Abstract

This paper examines the architecture and planning of the Mostra d'Oltremare in Naplesa national display of colonial expansion that opened in May 1940and the Esposizione Universale di Romaan Olympics of Civilization that was proposed for 1942. These two major exhibitions will be studied in relation to Italy's violent and racially motivated Imperial politics. In the first case, it will closely examine the Villaggi indigeni (Indigenous village) of Italian East Africa, a scientific re-enactment of native constructions that became a space of violence and political confinement. In the second, it will study the Villaggio operaio (Workers' village), which, just like the larger exhibition grounds, was transformed into a site of military conflict during the war period.

Built Environment Effects on Cyclist Injury Severity in Automobile-Involved Bicycle Crashes

Chen, Peng; Shen, Qing. (2016). Built Environment Effects on Cyclist Injury Severity in Automobile-Involved Bicycle Crashes. Accident Analysis & Prevention, 86, 239 – 246.

View Publication

Abstract

This analysis uses a generalized ordered logit model and a generalized additive model to estimate the effects of built environment factors on cyclist injury severity in automobile-involved bicycle crashes, as well as to accommodate possible spatial dependence among crash locations. The sample is drawn from the Seattle Department of Transportation bicycle collision profiles. This study classifies the cyclist injury types as property damage only, possible injury, evident injury, and severe injury or fatality. Our modeling outcomes show that: (1) injury severity is negatively associated with employment density; (2) severe injury or fatality is negatively associated with land use mixture; (3) lower likelihood of injuries is observed for bicyclists wearing reflective clothing; (4) improving street lighting can decrease the likelihood of cyclist injuries; (5) posted speed limit is positively associated with the probability of evident injury and severe injury or fatality; (6) older cyclists appear to be more vulnerable to severe injury or fatality; and (7) cyclists are more likely to be severely injured when large vehicles are involved in crashes. One implication drawn from this study is that cities should increase land use mixture and development density, optimally lower posted speed limits on streets with both bikes and motor vehicles, and improve street lighting to promote bicycle safety. In addition, cyclists should be encouraged to wear reflective clothing. (C) 2015 Elsevier Ltd. All rights reserved.

Keywords

Cycling Injuries; Traffic Accidents; Transportation Planning; Data Analysis; Employment; Built Environment; Cyclist Injury Severity; Generalized Additive Model; Generalized Ordered Logit Model; Ordered Response Model; United-states; Helmet; Frameworks; Driver; Risk

Visitor Center Design Research Based on Resilience Theory

Ren Hong; Wang Peng; Cai Weiguang; Li Dandan; Du Yongjie; Sun Junqiao; Abramson, Daniel. (2016). Visitor Center Design Research Based on Resilience Theory. Open House International, 41(3), 5 – 11.

View Publication

Abstract

Visitor center plays an important role in the normal operation and sustainable development of scenic spots, especially as a portal image of its management. This paper presents resilience theory for visitor centers to identify some common issues in designing visitor centers in China scenic spots, including the lack of function, loss of architectural characteristics, and difficultly in adapting to changes in the number of visitors with periodic variations. The framework of resilience theory was set from four dimensions, namely, resilience and match in the composition of ontology function, the extended function, integration of buildings into the surrounding environment, and alternative construction technologies and materials. This theory was explained and analyzed with the application of the theory in practice in combination with the design of Mount Hua visitor center. Results showed that resilience theory yields good application effect.

Keywords

Resilience Theory; Visitor Center; Design Research; Function Space

Activity-Based Life Cycle Analysis of a Curtain Wall Supply for Reducing Its Environmental Impact

Yi, June-seong; Kim, Yong-woo; Lim, Ji Youn; Lee, Jeehee. (2017). Activity-Based Life Cycle Analysis of a Curtain Wall Supply for Reducing Its Environmental Impact. Energy And Buildings, 138, 69 – 79.

View Publication

Abstract

Life-Cycle Assessment has been used extensively in the construction industry to assess the environmental impacts of building materials. Attributional LCA considers processes in a supply chain which allows users to identify a process to improve to minimize the environmental impacts. However, the level of detail adopted in traditional attributional LCA is aggregate, not appropriate for process improvement efforts in the construction project context which is characterized as a complex system. This paper proposes Activity-based LCA (ABLCA) which adopts the methodology of the activity-based costing system to carry out the assessment and analysis of environmental impacts for the life cycle. The research carried out a case study on the curtain wall supply chain. The outcome of inventory analysis for each activity and environmental impact assessment showed the curtain wall supply chain process made an impact on five environmental impact categories: global warming air, acidification air, HH criteria air; eutrophication air, and photochemical smog air. With comparison to the outcome of environmental impact assessment from existing LCA, the proposed management system to investigate environmental impacts was addressed. The proposed ABLCA enables management to develop an environmental-impacts-reduction plan focusing on critical activities. (C) 2016 Elsevier B.V. All rights reserved.

Keywords

Construction Industry & The Environment; Energy Conservation In Construction Industry; Building Materials & The Environment; Complexity (philosophy); Global Warming & The Environment; Activity-based Management; Attributional Lca (life-cycle Assessment); Curtain Wall; Environmental Impacts; Activity-based Life Cycle Analysis; Ablca; Construction Industry; Building Materials; Inventory Analysis; Life-cycle Assessment; Environmental Impact Categories; Curtain Wall Supply Chain Process; Environmental Impact Assessment; Environmental-impacts-reduction Plan; Environmental Factors; Inventory Management; Life Cycle Costing; Product Life Cycle Management; Supply Chain Management; Walls; United-states; Performance; Buildings; Energy; Trends; Lca; Environmental Impact; Supply Chains; Environmental Assessment; Construction Materials; Life Cycle Engineering; Eutrophication; Life Cycle Analysis; Construction; Climate Change; Global Warming; Smog; Life Cycle Assessment; Case Studies; Cost Analysis; Acidification; Photochemical Smog; Environmental Management; Life Cycles

Embodied Carbon as a Proxy for the Environmental Impact of Earthquake Damage Repair

Simonen, K.; Huang, M.; Aicher, C.; Morris, P. (2018). Embodied Carbon as a Proxy for the Environmental Impact of Earthquake Damage Repair. Energy And Buildings, 164, 131 – 139.

View Publication

Abstract

In evaluating the life cycle environmental impacts of buildings, the contributions of seismic damage are rarely considered. In order to enable a more comprehensive assessment of a building's environmental impact by accounting for seismic events, this project developed an environmental impact database of building component seismic damage - the largest of its kind known to date - by combining data from Carnegie Mellon University's Economic Input-Output Life Cycle Analysis (LCA) database with cost estimates of repair previously developed for FEMA's Performance Assessment Calculation Tool (PACT), a software that models probabilistic seismic damage in buildings. Fifteen indicators of environmental impacts were calculated for the repair of approximately 800 building components for up to five levels of seismic damage, capturing 'embodied' impacts related to cradle-to-gate manufacturing of building materials, products, and equipment. Analysis of the data revealed that non-structural and architectural finishes often dominated the environmental impacts of seismic damage per dollar spent in repair. A statistical analysis was performed on the data using Principal Component Analysis, confirming that embodied carbon, a popular metric for evaluating environmental impacts in building LCAs, is a suitable proxy for other relevant environmental impact metrics when assessing the impact of repairing earthquake damage of buildings. (C) 2018 Elsevier B.V. All rights reserved.

Keywords

Life-cycle Assessment; Input-output; Buildings; Life Cycle Assessment; Seismic Analysis; Performance-based Design; Economic Input-output; Principal Component Analysis; Energy And Climate Change; Architectural Engineering; Carbon; Carbon Cycle; Earthquake Damage; Earthquakes; Environmental Impact; Environmental Management; Databases; Finishes; Environmental Assessment; Building Components; Construction Materials; Life Cycle Engineering; Life Cycle Analysis; Data Bases; Damage Assessment; Aseismic Buildings; Statistical Analysis; Equipment Costs; Cost Estimates; Data Processing; Data Analysis; Seismic Activity; Cost Analysis; Principal Components Analysis; Performance Assessment; Life Cycles; Repair; Impact Damage; Building Materials; Economic Analysis; Software