Skip to content

2024 Innovation in the Construction Industry

Prof. Dossick’s CM515 Spring 2024 Class. (2024). 2024 Innovation in the Construction Industry (Sturts Dossick, C., & Ray, L., Eds.). UW Libraries Pressbooks.

View Publication

Abstract

This book contains a series of case studies authored by graduate students in CM515 Virtual Construction Management Spring 2024. We explored how people, teams, and companies change practices with a variety of new technologies in the workplace. You will find cases of people who are innovators, teams who took on innovation, and specific design and construction projects that realized these innovation practice changes.

Keywords

Technology; Engineering; Agriculture; Industrial processes

2024 Climate Solutions Symposium

The Inaugural CBE Climate Solutions Symposium took place on May 23, 2024. The event began with a reception and poster session, followed by an invited lecture “Every Project is a Climate Opportunity” with Don Davies, PE, SE and Joan Crooks. 36 research posters were submitted and accepted to the symposium. The posters covered a range of topics, from affordable housing in Indonesia (Bella Septianti, Architecture/Design Technology), to CLT and structural steel comparative lifecycle assessment (Mira Malden, Community, Environment, and Planning)….

Interactions between climate change and urbanization will shape the future of biodiversity

Urban, M.C., Alberti, M., De Meester, L. et al. Interactions between climate change and urbanization will shape the future of biodiversity. Nat. Clim. Chang. (2024). https://doi.org/10.1038/s41558-024-01996-2

View Publication

Abstract

Climate change and urbanization are two of the most prominent global drivers of biodiversity and ecosystem change. Fully understanding, predicting and mitigating the biological impacts of climate change and urbanization are not possible in isolation, especially given their growing importance in shaping human society. Here we develop an integrated framework for understanding and predicting the joint effects of climate change and urbanization on ecology, evolution and their eco-evolutionary interactions. We review five examples of interactions and then present five hypotheses that offer opportunities for predicting biodiversity and its interaction with human social and cultural systems under future scenarios. We also discuss research opportunities and ways to design resilient landscapes that address both biological and societal concerns.

Mohammad Tabatabaei Manesh

Mohammad Tabatabaei Manesh is a computational designer and building science researcher with expertise in programming and building performance. He works on the application of machine learning and deep learning in building performance, developing web apps and tools for architects. Currently, Mohammad’s work focuses on the design, fabrication, and evaluation of acoustic metamaterials for the built environment.

End of Life Modeling and Data in North American Whole Building Life Cycle Assessment Tools

Ashtiani, M., Palmeri, J., and Simonen, K. (2024). End of Life Modeling and Data in North American Whole Building Life Cycle Assessment Tools. Carbon Leadership Forum, University of Washington. Seattle, WA.

View Publication

Abstract

This document summarizes the Carbon Leadership Forum (CLF) research on end-of-life (EOL) modeling for a selection of building materials in whole building life cycle assessment (WBLCA) tools conducted as part of a larger project in collaboration with the National Renewable Energy Lab (NREL), Building Transparency (BT), and Skidmore, Owings & Merrill (SOM). The overarching goals of the project are to:

Improve EOL modeling in WBLCA tools by exploring data gaps and current tool capabilities.
Explore opportunities for developing and testing an open-access EOL database. This can potentially enable WBLCA tools to draw from this database and better harmonize the modeling of EOL impacts.
The recommendations, limitations, and future research ideas are based on: 1) a review of EOL data and modeling functions for three North American WBLCA tools, 2) direct interviews with North American WBLCA tool providers, and 3) a survey and an online workshop with experienced WBLCA tool users.

A-state-of-the-art review of risk management process of green building projects

Wang, L., Chan, D. W. M., Darko, A., & Oluleye, B. I. (2024). A-state-of-the-art review of risk management process of green building projects. Journal of Building Engineering, 86. https://doi.org/10.1016/j.jobe.2024.108738

View Publication

Abstract

Green buildings (GB) have attracted significant attention for improving sustainability and reducing carbon emissions in the building sector. Like traditional projects, risk management plays a crucial role in green projects. The inadequacy of risk management may lead to diminished workforce performance, delays in project schedules, and poor quality in GB projects. To comprehend risk management in GB projects, it is essential to conduct a state-of-the-art review. This study applied the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) method to select 52 records from the database ‘Scopus’ and ‘Web of Science’ (WoS). A bibliometric analysis indicated that the emphasis in risk management is on the identification and evaluation of risks in engineering projects. Subsequently, a thematic analysis displayed the research topics related to risk management, including (1) methods for identifying risks, (2) risk identification in special conditions, (3) risk assessment with fuzzy sets, social network analysis (SNA), and interpretive structural modeling (ISM), and (4) risk assessment with other technologies. This study focused on the research gaps within the risk management field, specifically in risk identification methods, risk evaluation methods, and risk-mitigating processes. Finally, with research gaps, this study also proposed related research directions for risk management in GB projects.

Life Cycle Lab

The Life Cycle Lab at UW’s College of Built Environments leads research to advance life cycle assessment (LCA) data, methods and approaches to enable optimization of materials, buildings and infrastructure.  Our  work is structured to inform impactful policies and practices that support global decarbonization efforts. We envision a transformed, decarbonized building industry – better buildings for a better planet.

Our group is led by Professor Kate Simonen. Since arriving at UW in 2009, she has conducted research and spearheaded initiatives focused on accelerating the transformation of the building sector to radically reduce the greenhouse gas emissions attributed to materials (also known as embodied carbon) used in buildings and infrastructure. From June 2010 until April 2024 she directed the Carbon Leadership Forum (CLF) as it was hosted in UW’s College of Built Environments. The core of CLF’s work has been to lay essential foundations for understanding embodied carbon: a framework for comprehensive strategy, rigorous analysis, and transparent reporting that can support design tools, effective policy, and collective action. 

In April 2024, two new entities were created to expand the program’s influence and impact: the Carbon Leadership Forum launched as an independent nonprofit organization and the newly named Life Cycle Lab was created to support the next generation of researchers and pursue critical embodied carbon research with an increased focus on academic publications. Learn more about this transition via this announcement.

Life Cycle Lab members include professional research staff, research assistants, students advised by Prof. Simonen, undergraduate interns and student assistants. Many of our members are formally affiliated with the Carbon Leadership Forum and the two organizations continue to actively collaborate developing strategies and executing aligned initiatives.

Projects associated with Life Cycle Lab include:

A Comparative Review of Polymer, Bacterial-based, and Alkali-Activated (also Geopolymer) Binders: Production, Mechanical, Durability, and Environmental impacts (life cycle assessment (LCA))

Nodehi, M., Aguayo, F., Madey, N., & Zhou, L. (2024). A Comparative Review of Polymer, Bacterial-based, and Alkali-Activated (also Geopolymer) Binders: Production, Mechanical, Durability, and Environmental impacts (life cycle assessment (LCA)). Construction & Building Materials, 422. https://doi.org/10.1016/j.conbuildmat.2024.135816
View Publication

Abstract

This review paper presents a comparative evaluation of polymer, bacterial-based, alkali-activated, and geopolymer binders in regard to their production methods, mechanical properties, their environmental/life cycle assessment (LCA), and durability when exposed to deteriorating cycles (such as sulfates, acids, and high temperatures). The significance of this study is to compare the results of over 400 journal papers, which present an in-depth analysis of fresh and hardened state properties of various binders that are advocated in the literature. Historically, Portland cement is generally considered a binder that plays a major role in any cementitious composites because of its high availability, and relatively inexpensive cost. Despite its significant benefits, it is known that the manufacturing process of Portland cement is energy and carbon intensive, and the resulted material often has shortcomings when exposed to deteriorating causes such as sulfates, acids, and high temperatures. However, recent movement toward net-zero as well as ultra-high-performance practices has increased the need for a more sustainable and durable binding system. Based on the result of this paper, each binder presents specific advantages when compared to Portland cement for specific applications that can be a better choice for their ultra-high capabilities and ecological properties. This includes the significantly better performance of alkali-activated binders (specifically geopolymers), under high temperatures, or very rapid strength gain of polymer (e.g., epoxy, polyester, and vinyl ester) binders, making them great alternatives to Portland cement, for rapid repair and rehabilitation purposes. Similarly, bacterial concrete also have certain capabilities such as long term durability and the potential for a continued self-repair or self-healing. In terms of environmental impacts, however, polymer binders are heavily depedant on their source of energy (e.g., petroleum vs. bio-based resins) while alkali-activated concretes and geopolymers have activators' large contributions to overall LCA impact categories. For bacterial binders, the used urea and nutrition can play a key role in their LCA results. Finally, based on the highlighted capabilities of each binder, recommendations on performance-based or hybrid design methods and specifications for an optimized system are also provided. Novel areas in polymer, bacterial-based, alkali-activated, and geopolymer binders are also included.

Keywords

Binding agents; Polymer concreteBacterial (or bio) concrete; Alkali-activated materials and geopolymer; Mechanical and durability properties

2024 CBE Inspire Fund Awardees Announced

The CBE Inspire Fund Awardees for the 2024 cycle have been selected! Their project names and team members are outlined below. Title: Mycelium Grow Lab for Student-led Research Team: Gundula Proksch (Associate Professor, Architecture), Tyler Sprague (Associate Professor, Architecture) Title: Exhibition of the works of OUR: Office of (Un)certainty Research Team: Vikram Prakash (Professor, Architecture) Title: Emergence, Resilience, and Future(s) of Urban Informality in Seattle Team: Julie Johnson (Associate Professor, Landscape Architecture), Manish Chalana (Associate Professor, Urban Design and Planning)…