Skip to content

End of Life Modeling and Data in North American Whole Building Life Cycle Assessment Tools

Ashtiani, M., Palmeri, J., and Simonen, K. (2024). End of Life Modeling and Data in North American Whole Building Life Cycle Assessment Tools. Carbon Leadership Forum, University of Washington. Seattle, WA.

View Publication

Abstract

This document summarizes the Carbon Leadership Forum (CLF) research on end-of-life (EOL) modeling for a selection of building materials in whole building life cycle assessment (WBLCA) tools conducted as part of a larger project in collaboration with the National Renewable Energy Lab (NREL), Building Transparency (BT), and Skidmore, Owings & Merrill (SOM). The overarching goals of the project are to:

Improve EOL modeling in WBLCA tools by exploring data gaps and current tool capabilities.
Explore opportunities for developing and testing an open-access EOL database. This can potentially enable WBLCA tools to draw from this database and better harmonize the modeling of EOL impacts.
The recommendations, limitations, and future research ideas are based on: 1) a review of EOL data and modeling functions for three North American WBLCA tools, 2) direct interviews with North American WBLCA tool providers, and 3) a survey and an online workshop with experienced WBLCA tool users.

A-state-of-the-art review of risk management process of green building projects

Wang, L., Chan, D. W. M., Darko, A., & Oluleye, B. I. (2024). A-state-of-the-art review of risk management process of green building projects. Journal of Building Engineering, 86. https://doi.org/10.1016/j.jobe.2024.108738

View Publication

Abstract

Green buildings (GB) have attracted significant attention for improving sustainability and reducing carbon emissions in the building sector. Like traditional projects, risk management plays a crucial role in green projects. The inadequacy of risk management may lead to diminished workforce performance, delays in project schedules, and poor quality in GB projects. To comprehend risk management in GB projects, it is essential to conduct a state-of-the-art review. This study applied the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) method to select 52 records from the database ‘Scopus’ and ‘Web of Science’ (WoS). A bibliometric analysis indicated that the emphasis in risk management is on the identification and evaluation of risks in engineering projects. Subsequently, a thematic analysis displayed the research topics related to risk management, including (1) methods for identifying risks, (2) risk identification in special conditions, (3) risk assessment with fuzzy sets, social network analysis (SNA), and interpretive structural modeling (ISM), and (4) risk assessment with other technologies. This study focused on the research gaps within the risk management field, specifically in risk identification methods, risk evaluation methods, and risk-mitigating processes. Finally, with research gaps, this study also proposed related research directions for risk management in GB projects.

Life Cycle Lab

The Life Cycle Lab at UW’s College of Built Environments leads research to advance life cycle assessment (LCA) data, methods and approaches to enable optimization of materials, buildings and infrastructure.  Our  work is structured to inform impactful policies and practices that support global decarbonization efforts. We envision a transformed, decarbonized building industry – better buildings for a better planet.

Our group is led by Professor Kate Simonen. Since arriving at UW in 2009, she has conducted research and spearheaded initiatives focused on accelerating the transformation of the building sector to radically reduce the greenhouse gas emissions attributed to materials (also known as embodied carbon) used in buildings and infrastructure. From June 2010 until April 2024 she directed the Carbon Leadership Forum (CLF) as it was hosted in UW’s College of Built Environments. The core of CLF’s work has been to lay essential foundations for understanding embodied carbon: a framework for comprehensive strategy, rigorous analysis, and transparent reporting that can support design tools, effective policy, and collective action. 

In April 2024, two new entities were created to expand the program’s influence and impact: the Carbon Leadership Forum launched as an independent nonprofit organization and the newly named Life Cycle Lab was created to support the next generation of researchers and pursue critical embodied carbon research with an increased focus on academic publications. Learn more about this transition via this announcement.

Life Cycle Lab members include professional research staff, research assistants, students advised by Prof. Simonen, undergraduate interns and student assistants. Many of our members are formally affiliated with the Carbon Leadership Forum and the two organizations continue to actively collaborate developing strategies and executing aligned initiatives.

Projects associated with Life Cycle Lab include:

A Comparative Review of Polymer, Bacterial-based, and Alkali-Activated (also Geopolymer) Binders: Production, Mechanical, Durability, and Environmental impacts (life cycle assessment (LCA))

Nodehi, M., Aguayo, F., Madey, N., & Zhou, L. (2024). A Comparative Review of Polymer, Bacterial-based, and Alkali-Activated (also Geopolymer) Binders: Production, Mechanical, Durability, and Environmental impacts (life cycle assessment (LCA)). Construction & Building Materials, 422. https://doi.org/10.1016/j.conbuildmat.2024.135816
View Publication

Abstract

This review paper presents a comparative evaluation of polymer, bacterial-based, alkali-activated, and geopolymer binders in regard to their production methods, mechanical properties, their environmental/life cycle assessment (LCA), and durability when exposed to deteriorating cycles (such as sulfates, acids, and high temperatures). The significance of this study is to compare the results of over 400 journal papers, which present an in-depth analysis of fresh and hardened state properties of various binders that are advocated in the literature. Historically, Portland cement is generally considered a binder that plays a major role in any cementitious composites because of its high availability, and relatively inexpensive cost. Despite its significant benefits, it is known that the manufacturing process of Portland cement is energy and carbon intensive, and the resulted material often has shortcomings when exposed to deteriorating causes such as sulfates, acids, and high temperatures. However, recent movement toward net-zero as well as ultra-high-performance practices has increased the need for a more sustainable and durable binding system. Based on the result of this paper, each binder presents specific advantages when compared to Portland cement for specific applications that can be a better choice for their ultra-high capabilities and ecological properties. This includes the significantly better performance of alkali-activated binders (specifically geopolymers), under high temperatures, or very rapid strength gain of polymer (e.g., epoxy, polyester, and vinyl ester) binders, making them great alternatives to Portland cement, for rapid repair and rehabilitation purposes. Similarly, bacterial concrete also have certain capabilities such as long term durability and the potential for a continued self-repair or self-healing. In terms of environmental impacts, however, polymer binders are heavily depedant on their source of energy (e.g., petroleum vs. bio-based resins) while alkali-activated concretes and geopolymers have activators' large contributions to overall LCA impact categories. For bacterial binders, the used urea and nutrition can play a key role in their LCA results. Finally, based on the highlighted capabilities of each binder, recommendations on performance-based or hybrid design methods and specifications for an optimized system are also provided. Novel areas in polymer, bacterial-based, alkali-activated, and geopolymer binders are also included.

Keywords

Binding agents; Polymer concreteBacterial (or bio) concrete; Alkali-activated materials and geopolymer; Mechanical and durability properties

2024 CBE Inspire Fund Awardees Announced

The CBE Inspire Fund Awardees for the 2024 cycle have been selected! Their project names and team members are outlined below. Title: Mycelium Grow Lab for Student-led Research Team: Gundula Proksch (Associate Professor, Architecture), Tyler Sprague (Associate Professor, Architecture) Title: Exhibition of the works of OUR: Office of (Un)certainty Research Team: Vikram Prakash (Professor, Architecture) Title: Emergence, Resilience, and Future(s) of Urban Informality in Seattle Team: Julie Johnson (Associate Professor, Landscape Architecture), Manish Chalana (Associate Professor, Urban Design and Planning)…

Final day of Change Stories Residential Knowledge Exchange

On Thursday, March 21st, the Change Stories team gathered for the final day of shared learning sessions. The first session was focused on developing a theory of change for the project. Small group discussions returned to topics from previous days, including how to effectively apply the decolonial research approach that is at the core of this work together. Deconstructing the initially drafted theory of change, the group identified the importance of co-creating guiding materials for the project. We enjoyed our…

Automating building environmental assessment: A systematic review and future research directions

T.A.D.K. Jayasanka, Amos Darko, D.J. Edwards, Albert P.C. Chan, Farzad Jalaei, Automating building environmental assessment: A systematic review and future research directions, Environmental Impact Assessment Review, Volume 106, 2024, 107465, ISSN 0195-9255, https://doi.org/10.1016/j.eiar.2024.107465.

View Publication

Abstract

Building environmental assessment (BEA) is critical to improving sustainability. However, the BEA process is inefficient, costly, and often inaccurate. Because automation has the potential to enhance the efficiency and accuracy of the BEA process, studies have focused on automating BEA (ABEA). Updated until now, a comprehensive analysis of prevailing literature on ABEA remains absent. This study conducts the first comprehensive systematic analysis appraising the state-of-the-art of research on ABEA. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guided to systematically analyse 91 relevant studies. Results uncover that only 29.7% of BEA systems worldwide have automated their processes, with the US LEED residing at the vanguard of automation efforts. The New Buildings scheme was mostly focused on, while largely ignoring other schemes, e.g., Existing Buildings. Five key digital approaches to ABEA were revealed, namely building information modelling (BIM) and plug-in software, BIM-ontology, data mining and machine learning, cloud-BIM, and digital twin-based approaches. Based on identified gaps, future research directions are proposed, specifically: using data mining and machine learning models for ABEA; development of a holistic cloud-based approach for real-time BEA; and digital twin for dynamic BEA. This study generates a deeper understanding of ABEA and its theoretical implications, such as major constructs and emerging perspectives, constitute a basis for holistic, and innovation in, BEA.

Day 3 of the Change Stories Residential Knowledge Exchange

On Wednesday, March 20th, the Change Stories team began the day with a site visit to the Manzana del Cuidado de Cuidad Bolivar (Block of Care in Bolivar). The bus dropped off the group at the TransMiCable cable car, which connects the people on a steep hillside to transportation and other resources. The TransMiCable costs $2300 pesos per trip – around US$0.70, and includes 163 cabins with room for 10 passengers each. Before the TransMiCable connected these communities, the walk…

Day 2 of Change Stories Residential Knowledge Exchange

Tuesday, March 19th, the Change Stories residential knowledge exchange group experienced a full day of shared learning sessions. Morning sessions included full discussions from the US community based organization team members, followed by a discussion about decolonializing research. The discussions were full and many perspectives, methods, and expertises’ were shared from different teams and institutions. Tuesday included a beautiful walk to lunch at a restaurant on the Universidad de los Andes campus; the variety of building design on campus was…

Day one of Change Stories residential knowledge exchange event

Monday, March 18th at 8am, individuals gathered in the hotel lobby; many people were meeting for the first time, some were long-term colleagues or past co-workers. Some participates were able to explore the city for a day or two before official activities began. Travel experiences were shared, first experiences in Bogotá were highlighted; on Sunday, a group participated in the Bogotá weekly Ciclovía, and experienced a free public Zumba exercise class in a local park.   Boarding the bus, many…