Cheng, Tao; Migliaccio, Giovanni C.; Teizer, Jochen; Gatti, Umberto C. (2013). Data Fusion of Real-Time Location Sensing and Physiological Status Monitoring for Ergonomics Analysis of Construction Workers. Journal Of Computing In Civil Engineering, 27(3), 320 – 335.
View Publication
Abstract
Previous research and applications in construction resource optimization have focused on tracking the location of material and equipment. There is a lack of studies on remote monitoring for improving safety and health of the construction workforce. This paper presents a new approach for monitoring ergonomically safe and unsafe behavior of construction workers. The study relies on a methodology that utilizes fusion of data from continuous remote monitoring of construction workers' location and physiological status. To monitor construction workers activities, the authors deployed nonintrusive real-time worker location sensing (RTLS) and physiological status monitoring (PSM) technology. This paper presents the background and need for a data fusion approach, the framework, the test bed environment, and results to some case studies that were used to automatically identify unhealthy work behavior. Results of this study suggest a new approach for automating remote monitoring of construction workers safety performance by fusing data on their location and physical strain. DOI: 10.1061/(ASCE)CP.1943-5487.0000222. (C) 2013 American Society of Civil Engineers.
Keywords
Civil Engineering Computing; Construction Industry; Ergonomics; Occupational Health; Occupational Safety; Personnel; Sensor Fusion; Psm Technology; Rtls Technology; Construction Workforce Health; Construction Workforce Safety; Equipment Location; Material Location; Construction Resource Optimization; Construction Worker; Ergonomics Analysis; Physiological Status Monitoring; Realtime Location Sensing; Data Fusion; Exposure; Tracking; Demands; Sensors; System; Construction Worker Behavior; Remote Location Sensing; Work Sampling; Workforce Safety And Health
Gatti, Umberto C.; Schneider, Suzanne; Migliaccio, Giovanni C. (2014). Physiological Condition Monitoring of Construction Workers. Automation In Construction, 44, 227 – 233.
View Publication
Abstract
Monitoring of workers' physiological conditions can potentially enhance construction workforce productivity, safety, and well-being. Recently, Physiological Status Monitors (PSMs) were validated as an accurate technology to assess physiological conditions during typical sport science and medicine testing procedures (e.g., treadmill and cycle ergometer protocols). However, sport science and medicine testing procedures cannot simulate routine construction worker movements in a comprehensive manner. Thus, this paper investigated the validity of two PSMs by comparing their measurements with gold standard laboratory instruments' measurements at rest and during dynamic activities resembling construction workforce's routine activities. Two physiological parameters such as heart rate and breathing rate were considered. Ten apparently healthy subjects participated in the study. One of the PSMs proved to be a viable technology in assessing construction workers' heart rate (correlation coefficient >= 0.74; percentage of differences within +/- 11 bpm >= 84.8%). (C) 2014 Elsevier B.V. All rights reserved,
Keywords
Construction Workers; Labor Supply; Labor Productivity; Well-being; Health Status Indicators; Heart Rate Monitoring; Physiology; Construction Management; Construction Worker; Ergonomics; Occupational Health And Safety; Physiological Status Monitoring Technology; Productivity; Work Physiological Demand; Work Physiology; Construction Industry; Monitoring; Occupational Safety; Medicine Testing; Sport Science; Psm; Physiological Status Monitors; Safety; Construction Workforce Productivity; Workers Monitoring; Physiological Condition Monitoring; Heart-rate Monitors; R-r Intervals; Statistical-methods; Respiratory Rate; Physical Load; Polar S810; Strain; Validity; Reliability; Validation
Kim, Sang-chul; Kim, Yong-woo; Park, Kun Soo; Yoo, Choong-yuel. (2015). Impact of Measuring Operational-Level Planning Reliability on Management-Level Project Performance. Journal Of Management In Engineering, 31(5).
View Publication
Abstract
The earned value management system (EVMS) and the last planner system (LPS) have been widely used as effective performance measurement tools for construction managers and production units at construction projects. While the EVMS measures project-level costs and scheduling performances, the LPS measures the percent plan complete (PPC), which indicates the level of planning reliability. This paper investigates the relationship between planning reliability at the operational level and project performance at the management level (i.e., the success or failure of a project). Analyzing the empirical data of 23 residential projects of a large construction company, the authors find that, while the production plan in the weekly schedule is correlated rigidly with the daily plan in successful projects, such a rigid correlation is not observed in unsuccessful projects. To understand this finding, the authors further conducted interviews with project stakeholders. Taken together, this study suggests that an emphasis on LPS indices causes subcontractors to engage in myopic behaviors such as modifying operational-level indices. Consequently, management-level production plan rigidity is at risk. The findings in this paper offer valuable insights and help project stakeholders understand the attributes of operational-level and management-level indices and their relationships. (C) 2014 American Society of Civil Engineers.
Keywords
Construction Industry; Costing; Production Planning; Project Management; Reliability; Scheduling; Subcontracting; Construction Projects; Production Units; Myopic Behaviors; Project Stakeholders; Subcontractors; Production Plan; Percent Plan Completion; Scheduling Performances; Project-level Costs; Performance Measurement Tools; Construction Managers; Last Planner System; Earned Value Management System; Management-level Project Performance; Evms; Operational-level Planning Reliability; Balanced Scorecard; Lean Construction; Contractors; Indexes; Design; Model; Earned Value; Lean; Construction; Schedule Performance Index; Cost Performance Index; Percent-plan-completion; Empirical Analysis
Kim, Tae-hyung; Lee, Hyun Woo; Hong, Seok-woo. (2016). Value Engineering for Roadway Expansion Project over Deep Thick Soft Soils. Journal Of Construction Engineering And Management, 142(2).
View Publication
Abstract
A roadway expansion that takes place on soft ground is susceptible to differential settlement because of the high consolidation of soft soils. Therefore, steps must be taken to lessen the risk of such settlement; yet, this often only results in costly drainage solutions. In that, applying a systematic value engineering (VE) process can be beneficial to develop cost-effective design alternatives. However, VE studies specifically targeting for this problem are absent from the field. Thus, the goal of this study is to supplement this knowledge gap by applying a systematic VE process to an expansion project on soft ground to demonstrate the benefits of performing VE. A case study was performed on an expansion project over a soft soil layer approximately 50m thick. Through the VE process, the original design was reviewed, problems were discussed, and three alternatives were proposed. Then value analysis techniques were applied to evaluate these alternatives in terms of cost saving, function improvement, and value improvement with respect to the original design. The VE process and design alternatives as applied in this study are expected to serve as a guideline for engineers and decision-makers in roadway expansion projects on soft ground. (C) 2015 American Society of Civil Engineers.
Keywords
Construction Industry; Costing; Project Management; Road Building; Soil; Value Engineering; Engineers; Decision-makers; Value Improvement; Function Improvement; Knowledge Gap; Cost-effective Design; Deep Thick Soft Soils; Soft Ground; Roadway Expansion Project; Systematic Value Engineering Process; Value Engineering (ve); Job Plan; Roadway Expansion; Deep Soft Ground; Differential Settlement; Cost Saving; Project Planning And Design
Lee, Wonil; Lin, Ken-yu; Seto, Edmund; Migliaccio, Giovanni C. (2017). Wearable Sensors For Monitoring On-duty And Off-duty Worker Physiological Status And Activities In Construction. Automation In Construction, 83, 341 – 353.
View Publication
Abstract
Total Worker Health (R) (TWH) integrates occupational health and safety with the promotion of workers' off-duty wellbeing. Wearable sensors (e.g., activity trackers and physiological monitors) have facilitated personalized objective measurement of workers' health and wellbeing. Furthermore, the TWH concept is relevant to construction workers, especially roofing workers, as they encounter high on-duty health and safety risks and have poor off-duty lifestyles. This study examined the reliability and usability of wearable sensors for monitoring roofing workers' on-duty and off-duty activities. The results demonstrated the usability of these sensors and recommended a data collection period of three consecutive days for obtaining an intraclass correlation coefficient of 0.75 for heart rate, energy expenditure, metabolic equivalents, and sleep efficiency. The participants exhibited significant variations in their physical responses, health statuses, and safety behaviors. Moreover, several issues were identified in the application of wearable sensors to TWH evaluations for construction workers including roofers.
Keywords
Construction Workers; Wearable Technology; Employee Health Promotion; Roofing Industry; Body Sensor Networks; Health; Construction Safety And Health; Usability Study; Wearable Sensors; Worker Monitoring; Worker Physiology; Construction Industry; Ergonomics; Occupational Health; Occupational Safety; Patient Monitoring; Personnel; Roofs; Sleep; Off-duty Worker Physiological Status; Total Worker Health®; Off-duty Wellbeing; Activity Trackers; Physiological Monitors; Twh Concept; On-duty Health; Safety Risks; Off-duty Lifestyles; Monitoring Roofing Workers; Off-duty Activities; Health Statuses; Heart-rate-variability; Energy-expenditure; Health Protection; Physical-activity; Validity; Reliability; Validation; Promotion; Productivity; Actigraph
Liang, Huakang; Lin, Ken-yu; Zhang, Shoujian. (2018). Understanding The Social Contagion Effect Of Safety Violations Within A Construction Crew: A Hybrid Approach Using System Dynamics And Agent-based Modeling. International Journal Of Environmental Research And Public Health, 15(12).
View Publication
Abstract
Previous research has recognized the importance of eliminating safety violations in the context of a social group. However, the social contagion effect of safety violations within a construction crew has not been sufficiently understood. To address this deficiency, this research aims to develop a hybrid simulation approach to look into the cognitive, social, and organizational aspects that can determine the social contagion effect of safety violations within a construction crew. The hybrid approach integrates System Dynamics (SD) and Agent-based Modeling (ABM) to better represent the real world. Our findings show that different interventions should be employed for different work environments. Specifically, social interactions play a critical role at the modest hazard levels because workers in this situation may encounter more ambiguity or uncertainty. Interventions related to decreasing the contagion probability and the safety-productivity tradeoff should be given priority. For the low hazard situation, highly intensive management strategies are required before the occurrence of injuries or accidents. In contrast, for the high hazard situation, highly intensive proactive safety strategies should be supplemented by other interventions (e.g., a high safety goal) to further control safety violations. Therefore, this research provides a practical framework to examine how specific accident prevention measures, which interact with workers or environmental characteristics (i.e., the hazard level), can influence the social contagion effect of safety violations.
Keywords
Risk-taking; Coworker Support; Employee Safety; Job Demands; Work Groups; Behavior; Climate; Impact; Performance; Simulation; Social Contagion Effect; Routine Safety Violations; Situational Safety Violations; System Dynamics; Agent-based Simulation; Research; Violations; Modelling; Accident Prevention; Social Factors; Safety; Organizational Aspects; Occupational Safety; Construction; Influence; Construction Accidents & Safety; Workers; Safety Management; Information Processing; Construction Industry; Hybrid Systems; Social Interactions; Cognitive Ability; Human Error; Accident Investigations
Habibnezhad, M.; Puckett, J.; Fardhosseini, M.S.; Pratama, L.A. (2019). A Mixed VR and Physical Framework to Evaluate Impacts of Virtual Legs and Elevated Narrow Working Space on Construction Workers Gait Pattern. Arxiv, 7 pp.
View Publication
Abstract
It is difficult to conduct training and evaluate workers' postural performance by using the actual job site environment due to safety concerns. Virtual reality (VR) provides an alternative to create immersive working environments without significant safety concerns. Working on elevated surfaces is a dangerous scenario, which may lead to gait and postural instability and, consequently, a serious fall. Previous studies showed that VR is a promising tool for measuring the impact of height on the postural sway. However, most of these studies used the treadmill as the walking locomotion apparatus in a virtual environment (VE). This paper was focused on natural walking locomotion to reduce the inherent postural perturbations of VR devices. To investigate the impact of virtual height on gait characteristics and keep the level of realism and feeling of presence at their highest, we enhanced the first-person-character model with "virtual legs". Afterward, we investigated its effect on the gait parameters of the participants with and without the presence of height. To that end, twelve healthy adults were asked to walk on a virtual loop path once at the ground level and once at the 17th floor of an unfinished structure. By quantitatively comparing the participants' gait pattern results, we observed a decrease in the stride length and increase in the gait duration of the participants exposed to height. At the ground level, the use of the enhanced model reduced participants' average stride length and height. The results of this study help us understand users' behaviors when they were exposed to elevated surfaces and establish a firm ground for gait stability analysis for the future height-related VR studies. We expect this developed VR platform can generate reliable results of VR application in more construction safety studies.
Keywords
Civil Engineering Computing; Construction Industry; Gait Analysis; Medical Computing; Occupational Safety; Virtual Reality; Construction Safety Studies; Mixed Vr; Virtual Legs; Construction Workers Gait Pattern; Immersive Working Environments; Postural Instability; Serious Fall; Postural Sway; Walking Locomotion Apparatus; Natural Walking Locomotion; Inherent Postural Perturbations; Vr Devices; Virtual Height; First-person-character Model; Gait Parameters; Virtual Loop Path; Stride Length; Gait Duration; Gait Stability Analysis; Safety Concerns; Vr Platform; Height-related Vr Studies
Adhikari, Pramodit; Mahmoud, Hussam; Xie, Aiwen; Simonen, Kathrina; Ellingwood, Bruce. (2020). Life-Cycle Cost and Carbon Footprint Analysis for Light-framed Residential Buildings Subjected to Tornado Hazard. Journal Of Building Engineering, 32.
View Publication
Abstract
Light-frame wood building construction dominates the single-family residential home market in the United States. Such buildings are susceptible to damage from extreme winds due to hurricanes in coastal areas and tornados in the Midwest. The consequences of extreme winds on the built environment and on social and economic institutions within the community can be severe and are likely to increase in the coming decades as a result of increases in urbanization and economic development and the potential impacts of changing climate in hazard prone areas. Current building practices provide minimum standards for occupant safety and health, including structural integrity, water and sanitation, lighting, ventilation, means of egress and fire protection. However, they generally do not consider building resilience, which includes robustness and an ability to recover following extreme natural hazard events. Nor do they address sustainability, the notion that building design, construction and rehabilitation should not adversely impact the environment. In this paper, we establish a generalized cost and carbon footprint life-cycle analysis methodology for examining the benefits of different building practices for residential light-frame wood construction subjected to tornado hazards. A multiobjective approach is used to reveal tradeoffs between resilient and sustainable practices for typical residential construction. We show that when the life cycle of a typical residence is considered, a balance between resilience, sustainability and cost might be achieved in design and rehabilitation of residential building construction for tornado hazards.
Keywords
Performance; Risk; Fragility; Residential Buildings; Life-cycle Analysis; Resilience; Optimal Decisions; Sustainable Construction; Tornadoes
Nnaji, Chukwuma; Karakhan, Ali A.; Gambatese, John; Lee, Hyun Woo. (2020). Case Study to Evaluate Work-Zone Safety Technologies in Highway Construction. Practice Periodical On Structural Design And Construction, 25(3).
View Publication
Abstract
The construction industry is known for its conservative approach toward adopting new, emerging technologies. This conservative approach for adopting technology is caused by multiple factors including the lack of adequate resources to guide construction practitioners in the process of evaluating whether a construction firm should adopt a certain technology or not. Previous studies have already proposed rigorous protocols for evaluating work-zone technologies, but the implementation of such protocols is still unclear to many construction practitioners. The objective of this study is to provide a case study example of how evaluation protocols can be used in practice to determine whether a firm should adopt a certain work-zone technology. The case study focused on assessing the usefulness of commercially available work-zone intrusion alert technologies (WZIATs). The results of the evaluation revealed that some WZIATs could be more attractive to construction organizations and agencies in terms of providing louder alarms, being more mobile, and allowing a higher transmission range. The case study example discussed in this study is expected to provide invaluable practical information to practitioners in the construction industry interested in evaluating and adopting emerging technologies.
Keywords
Construction Industry; Mobile Radio; Occupational Safety; Road Building; Road Safety; Highway Construction; Conservative Approach; Construction Practitioners; Construction Firm; Rigorous Protocols; Work-zone Technology; Case Study Example; Evaluation Protocols; Commercially Available Work-zone Intrusion Alert Technologies; Construction Organizations; Evaluate Work-zone Safety Technologies; Speed; Signs; Work Zone; Safety Technology; Intrusion Alert; Evaluation Protocol
Shtrepi, Louena; Echenagucia, Tomás Méndez; Badino, Elena; Astolfi, Arianna. (2021). A Performance-based Optimization Approach For Diffusive Surface Topology Design. Building Acoustics, 28(3), 231 – 247.
View Publication
Abstract
Different numerical techniques have been used in the last decades for the acoustic characterization and performance optimization of sound diffusive surfaces. However, these methods require very long calculation times and do not provide a rapid feedback. As a result, these methods can hardly be applied by designers at early stages of the design process, when successive design iterations are necessary from an aesthetic point of view. A suitable alternative could be the use of parametric modeling in combination with performance investigations during the design process of sound diffusive surfaces. To this aim, this study presents a design process for diffusive surfaces topology optimization based on the combination of parametric models and geometrical acoustic simulations. It aims to provide architects and designers with rapid visual feedback on acoustic performances at a preliminary stage of the design process. The method has been tested on different case studies, which have been modelled based on geometric guidelines for diffusive surface optimization. The sensitivity of the method showed that it could be a very useful tool for comparisons among surface design alternatives. Finally, the advantages and limitations of the integrated optimization in comparison with conventional optimizations are discussed.
Keywords
Acoustic Performance; Room Acoustics; Scattering; Coefficients; Accuracy; Field; Simulations; Diffusion; Surface Optimization; Performance-based Design