Skip to content

Empirical Assessment of Spatial Prediction Methods for Location Cost-Adjustment Factors

Migliaccio, Giovanni C.; Guindani, Michele; D’Incognito, Maria; Zhang, Linlin. (2013). Empirical Assessment of Spatial Prediction Methods for Location Cost-Adjustment Factors. Journal Of Construction Engineering & Management, 139(7), 858 – 869.

View Publication

Abstract

In the feasibility stage of a project, location cost-adjustment factors (LCAFs) are commonly used to perform quick order-of-magnitude estimates. Nowadays, numerous LCAF data sets are available in North America, but they do not include all locations. Hence, LCAFs for unsampled locations need to be inferred through spatial interpolation or prediction methods. Using a commonly used set of LCAFs, this paper aims to test the accuracy of various spatial prediction methods and spatial interpolation methods in estimating LCAF values for unsampled locations. Between the two regression-based prediction models selected for the study, geographically weighted regression analysis (GWR) resulted the most appropriate way to model the city cost index as a function of multiple covariates. As a direct consequence of its spatial nonstationarity, the influence of each single covariate differed from state to state. In addition, this paper includes a first attempt to determine if the observed variability in cost index values could be at least partially explained by independent socioeconomic variables. (C) 2013 American Society of Civil Engineers.

Keywords

Construction Industry; Interpolation; Regression Analysis; Socio-economic Effects; Spatial Prediction Methods; Location Cost-adjustment Factors; Empirical Assessment; Lcaf; Order-of-magnitude Estimates; North America; Unsampled Locations; Spatial Interpolation Methods; Geographically Weighted Regression Analysis; Gwr; Independent Socioeconomic Variables; Inflation; Indexes; Estimation; Geostatistics; Construction Costs; Planning; Budgeting

Architecture During Wartime: The Mostra d’Oltremare and Esposizione Universale di Roma

McLaren, Brian L. (2014). Architecture During Wartime: The Mostra d’Oltremare and Esposizione Universale di Roma. Architectural Theory Review, 19(3), 299 – 318.

View Publication

Abstract

This paper examines the architecture and planning of the Mostra d'Oltremare in Naplesa national display of colonial expansion that opened in May 1940and the Esposizione Universale di Romaan Olympics of Civilization that was proposed for 1942. These two major exhibitions will be studied in relation to Italy's violent and racially motivated Imperial politics. In the first case, it will closely examine the Villaggi indigeni (Indigenous village) of Italian East Africa, a scientific re-enactment of native constructions that became a space of violence and political confinement. In the second, it will study the Villaggio operaio (Workers' village), which, just like the larger exhibition grounds, was transformed into a site of military conflict during the war period.

Built Environment Effects on Cyclist Injury Severity in Automobile-Involved Bicycle Crashes

Chen, Peng; Shen, Qing. (2016). Built Environment Effects on Cyclist Injury Severity in Automobile-Involved Bicycle Crashes. Accident Analysis & Prevention, 86, 239 – 246.

View Publication

Abstract

This analysis uses a generalized ordered logit model and a generalized additive model to estimate the effects of built environment factors on cyclist injury severity in automobile-involved bicycle crashes, as well as to accommodate possible spatial dependence among crash locations. The sample is drawn from the Seattle Department of Transportation bicycle collision profiles. This study classifies the cyclist injury types as property damage only, possible injury, evident injury, and severe injury or fatality. Our modeling outcomes show that: (1) injury severity is negatively associated with employment density; (2) severe injury or fatality is negatively associated with land use mixture; (3) lower likelihood of injuries is observed for bicyclists wearing reflective clothing; (4) improving street lighting can decrease the likelihood of cyclist injuries; (5) posted speed limit is positively associated with the probability of evident injury and severe injury or fatality; (6) older cyclists appear to be more vulnerable to severe injury or fatality; and (7) cyclists are more likely to be severely injured when large vehicles are involved in crashes. One implication drawn from this study is that cities should increase land use mixture and development density, optimally lower posted speed limits on streets with both bikes and motor vehicles, and improve street lighting to promote bicycle safety. In addition, cyclists should be encouraged to wear reflective clothing. (C) 2015 Elsevier Ltd. All rights reserved.

Keywords

Cycling Injuries; Traffic Accidents; Transportation Planning; Data Analysis; Employment; Built Environment; Cyclist Injury Severity; Generalized Additive Model; Generalized Ordered Logit Model; Ordered Response Model; United-states; Helmet; Frameworks; Driver; Risk

Visitor Center Design Research Based on Resilience Theory

Ren Hong; Wang Peng; Cai Weiguang; Li Dandan; Du Yongjie; Sun Junqiao; Abramson, Daniel. (2016). Visitor Center Design Research Based on Resilience Theory. Open House International, 41(3), 5 – 11.

View Publication

Abstract

Visitor center plays an important role in the normal operation and sustainable development of scenic spots, especially as a portal image of its management. This paper presents resilience theory for visitor centers to identify some common issues in designing visitor centers in China scenic spots, including the lack of function, loss of architectural characteristics, and difficultly in adapting to changes in the number of visitors with periodic variations. The framework of resilience theory was set from four dimensions, namely, resilience and match in the composition of ontology function, the extended function, integration of buildings into the surrounding environment, and alternative construction technologies and materials. This theory was explained and analyzed with the application of the theory in practice in combination with the design of Mount Hua visitor center. Results showed that resilience theory yields good application effect.

Keywords

Resilience Theory; Visitor Center; Design Research; Function Space

Activity-Based Life Cycle Analysis of a Curtain Wall Supply for Reducing Its Environmental Impact

Yi, June-seong; Kim, Yong-woo; Lim, Ji Youn; Lee, Jeehee. (2017). Activity-Based Life Cycle Analysis of a Curtain Wall Supply for Reducing Its Environmental Impact. Energy And Buildings, 138, 69 – 79.

View Publication

Abstract

Life-Cycle Assessment has been used extensively in the construction industry to assess the environmental impacts of building materials. Attributional LCA considers processes in a supply chain which allows users to identify a process to improve to minimize the environmental impacts. However, the level of detail adopted in traditional attributional LCA is aggregate, not appropriate for process improvement efforts in the construction project context which is characterized as a complex system. This paper proposes Activity-based LCA (ABLCA) which adopts the methodology of the activity-based costing system to carry out the assessment and analysis of environmental impacts for the life cycle. The research carried out a case study on the curtain wall supply chain. The outcome of inventory analysis for each activity and environmental impact assessment showed the curtain wall supply chain process made an impact on five environmental impact categories: global warming air, acidification air, HH criteria air; eutrophication air, and photochemical smog air. With comparison to the outcome of environmental impact assessment from existing LCA, the proposed management system to investigate environmental impacts was addressed. The proposed ABLCA enables management to develop an environmental-impacts-reduction plan focusing on critical activities. (C) 2016 Elsevier B.V. All rights reserved.

Keywords

Construction Industry & The Environment; Energy Conservation In Construction Industry; Building Materials & The Environment; Complexity (philosophy); Global Warming & The Environment; Activity-based Management; Attributional Lca (life-cycle Assessment); Curtain Wall; Environmental Impacts; Activity-based Life Cycle Analysis; Ablca; Construction Industry; Building Materials; Inventory Analysis; Life-cycle Assessment; Environmental Impact Categories; Curtain Wall Supply Chain Process; Environmental Impact Assessment; Environmental-impacts-reduction Plan; Environmental Factors; Inventory Management; Life Cycle Costing; Product Life Cycle Management; Supply Chain Management; Walls; United-states; Performance; Buildings; Energy; Trends; Lca; Environmental Impact; Supply Chains; Environmental Assessment; Construction Materials; Life Cycle Engineering; Eutrophication; Life Cycle Analysis; Construction; Climate Change; Global Warming; Smog; Life Cycle Assessment; Case Studies; Cost Analysis; Acidification; Photochemical Smog; Environmental Management; Life Cycles

Embodied Carbon as a Proxy for the Environmental Impact of Earthquake Damage Repair

Simonen, K.; Huang, M.; Aicher, C.; Morris, P. (2018). Embodied Carbon as a Proxy for the Environmental Impact of Earthquake Damage Repair. Energy And Buildings, 164, 131 – 139.

View Publication

Abstract

In evaluating the life cycle environmental impacts of buildings, the contributions of seismic damage are rarely considered. In order to enable a more comprehensive assessment of a building's environmental impact by accounting for seismic events, this project developed an environmental impact database of building component seismic damage - the largest of its kind known to date - by combining data from Carnegie Mellon University's Economic Input-Output Life Cycle Analysis (LCA) database with cost estimates of repair previously developed for FEMA's Performance Assessment Calculation Tool (PACT), a software that models probabilistic seismic damage in buildings. Fifteen indicators of environmental impacts were calculated for the repair of approximately 800 building components for up to five levels of seismic damage, capturing 'embodied' impacts related to cradle-to-gate manufacturing of building materials, products, and equipment. Analysis of the data revealed that non-structural and architectural finishes often dominated the environmental impacts of seismic damage per dollar spent in repair. A statistical analysis was performed on the data using Principal Component Analysis, confirming that embodied carbon, a popular metric for evaluating environmental impacts in building LCAs, is a suitable proxy for other relevant environmental impact metrics when assessing the impact of repairing earthquake damage of buildings. (C) 2018 Elsevier B.V. All rights reserved.

Keywords

Life-cycle Assessment; Input-output; Buildings; Life Cycle Assessment; Seismic Analysis; Performance-based Design; Economic Input-output; Principal Component Analysis; Energy And Climate Change; Architectural Engineering; Carbon; Carbon Cycle; Earthquake Damage; Earthquakes; Environmental Impact; Environmental Management; Databases; Finishes; Environmental Assessment; Building Components; Construction Materials; Life Cycle Engineering; Life Cycle Analysis; Data Bases; Damage Assessment; Aseismic Buildings; Statistical Analysis; Equipment Costs; Cost Estimates; Data Processing; Data Analysis; Seismic Activity; Cost Analysis; Principal Components Analysis; Performance Assessment; Life Cycles; Repair; Impact Damage; Building Materials; Economic Analysis; Software

Bare Facts and Benefits of Resource-Loaded CPM Schedules

Ottesen, Jeffery L.; Martin, Greta A. (2019). Bare Facts and Benefits of Resource-Loaded CPM Schedules. Journal Of Legal Affairs And Dispute Resolution In Engineering And Construction, 11(3).

View Publication

Abstract

Forum papers are thought-provoking opinion pieces or essays founded in fact, sometimes containing speculation, on a civil engineering topic of general interest and relevance to the readership of the journal. The views expressed in this Forum article do not necessarily reflect the views of ASCE or the Editorial Board of the journal.

Dynamic Production Scheduling Model Under Due Date Uncertainty in Precast Concrete Construction

Kim, Taehoon; Kim, Yong-Woo; Cho, Hunhee. (2020). Dynamic Production Scheduling Model Under Due Date Uncertainty in Precast Concrete Construction. Journal Of Cleaner Production, 257.

View Publication

Abstract

Precast concrete structures (PCs) are widely used in the construction industry to reduce project delivery times and improve quality. On-time delivery of PCs is critical for successful project completion because the processes involving precast concrete are the critical paths in most cases. However, existing models for scheduling PC production are not adequate for use in dynamic environments where construction projects have uncertain construction schedules because of various reasons such as poor labor productivity, inadequate equipment, and poor weather. This research proposes a dynamic model for PC production scheduling by adopting a discrete-time simulation method to respond to due date changes in real time and by using a new dispatching rule that considers the uncertainty of the due dates to minimize tardiness. The model is validated by simulation experiments based on various scenarios with different levels of tightness and due date uncertainty. The results of this research will contribute to construction project productivity with a reliable and economic precast concrete supply chain. (C) 2020 Elsevier Ltd. All rights reserved.

Keywords

Multiple Production; Demand Variability; Supply Chain; Shop; Management; Minimize; Lines; Precast Concrete Production; Dynamic Simulation; Uncertainty; Production Scheduling; Dispatching Rule

Associations between Neighborhood Greenspace and Brain Imaging Measures in Non-Demented Older Adults: The Cardiovascular Health Study

Besser, Lilah M.; Lovasi, Gina S.; Michael, Yvonne L.; Garg, Parveen; Hirsch, Jana A.; Siscovick, David; Hurvitz, Phil; Biggs, Mary L.; Galvin, James E.; Bartz, Traci M.; Longstreth, W. T. (2021). Associations between Neighborhood Greenspace and Brain Imaging Measures in Non-Demented Older Adults: The Cardiovascular Health Study. Social Psychiatry And Psychiatric Epidemiology, 56(9), 1575 – 1585.

View Publication

Abstract

Purpose Greater neighborhood greenspace has been associated with brain health, including better cognition and lower odds of Alzheimer's disease in older adults. We investigated associations between neighborhood greenspace and brain-based magnetic resonance imaging (MRI) measures and potential effect modification by sex or apolipoprotein E genotype (APOE), a risk factor for Alzheimer's disease. Methods We obtained a sample of non-demented participants 65 years or older (n = 1125) from the longitudinal, population-based Cardiovascular Health Study (CHS). Greenspace data were derived from the National Land Cover Dataset. Adjusted multivariable linear regression estimated associations between neighborhood greenspace five years prior to the MRI and left and right hippocampal volume and 10-point grades of ventricular size and burden of white matter hyperintensity. Interaction terms tested effect modification by APOE genotype and sex. CHS data (1989-1999) were obtained/analyzed in 2020. Results Participants were on average 79 years old [standard deviation (SD) = 4], 58% were female, and 11% were non-white race. Mean neighborhood greenspace was 38% (SD = 28%). Greater proportion of greenspace in the neighborhood five years before MRI was borderline associated with lower ventricle grade (estimate: - 0.30; 95% confidence interval: - 0.61, 0.00). We observed no associations between greenspace and the other MRI outcome measures and no evidence of effect modification by APOE genotype and sex. Conclusion This study suggests a possible association between greater greenspace and less ventricular enlargement, a measure reflecting global brain atrophy. If confirmed in other longitudinal cohort studies, interventions and policies to improve community greenspaces may help to maintain brain health in older age.

Keywords

Mild Cognitive Impairment; Ventricular Enlargement; Residential Greenness; Hippocampal Atrophy; Volume; Disease; Environment; Progression; Symptoms; Dementia; Neighborhood; Green Space; Mri; Brain Volume; Hippocampal; White Matter

Comparative Life Cycle Assessment of Mass Timber and Concrete Residential Buildings: A Case Study in China

Chen, Cindy X.; Pierobon, Francesca; Jones, Susan; Maples, Ian; Gong, Yingchun; Ganguly, Indroneil. (2022). Comparative Life Cycle Assessment of Mass Timber and Concrete Residential Buildings: A Case Study in China. Sustainability, 14(1).

View Publication

Abstract

As the population continues to grow in China's urban settings, the building sector contributes to increasing levels of greenhouse gas (GHG) emissions. Concrete and steel are the two most common construction materials used in China and account for 60% of the carbon emissions among all building components. Mass timber is recognized as an alternative building material to concrete and steel, characterized by better environmental performance and unique structural features. Nonetheless, research associated with mass timber buildings is still lacking in China. Quantifying the emission mitigation potentials of using mass timber in new buildings can help accelerate associated policy development and provide valuable references for developing more sustainable constructions in China. This study used a life cycle assessment (LCA) approach to compare the environmental impacts of a baseline concrete building and a functionally equivalent timber building that uses cross-laminated timber as the primary material. A cradle-to-gate LCA model was developed based on onsite interviews and surveys collected in China, existing publications, and geography-specific life cycle inventory data. The results show that the timber building achieved a 25% reduction in global warming potential compared to its concrete counterpart. The environmental performance of timber buildings can be further improved through local sourcing, enhanced logistics, and manufacturing optimizations.

Keywords

Mass Timber; Embodied Carbon; Climate Change; Carbon Reduction; Building Footprint; Built Environment; Forest Products; Life Cycle Analysis; Environmental Impacts; Wood Laminates; Geography; Concrete; Flooring; Manufacturing; Global Warming; Concrete Construction; Construction Materials; Emissions Trading; Greenhouse Gases; Residential Areas; Energy Consumption; Life Cycle Assessment; Greenhouse Effect; Life Cycles; Construction Industry; Logistics; Floor Coverings; Urbanization; Timber; Urban Environments; Building Components; Emissions; Residential Buildings; Carbon Footprint; Urban Areas; Environmental Impact; Building Construction; Case Studies; Wood Products; Mitigation; Buildings; Timber (structural); United States--us; China