Lin, Ken-yu; Tsai, Meng-han; Gatti, Umberto C.; Lin, Jacob Je-chian; Lee, Cheng-hao; Kang, Shih-chung. (2014). A User-centered Information And Communication Technology (ict) Tool To Improve Safety Inspections. Automation In Construction, 48, 53 – 63.
View Publication
Abstract
Occupational safety is imperative in construction, and safety inspection is among the most common practices that help enforce job safety on site. The safety inspection process, however, suffers from several drawbacks that hinder the efficiency, effectiveness, and analytical learning capacity of the process. Dedicated tools for user-centered information and communications technology could significantly reduce such drawbacks. This paper discusses the use of an original two-step user-centered design approach to develop and evaluate an iPad application that aims to address such drawbacks and improve the day-to-day practices and management of safety inspections. Evaluation results indicate the usefulness and practicality of the application and identify innovative uses not previously envisioned. Furthermore, the developed tool allows consistent data collection that can eventually be used to aid the development of advanced safety and health data analysis techniques. (C) 2014 Elsevier B.V. All rights reserved.
Keywords
Information & Communication Technologies; Industrial Safety; Data Analysis; Technological Innovations; Ipads; Construction Safety; Field Data Collection; Field Inspection; Information And Communication Technology; Research To Practice; Safety Audit; Safety Inspection; Safety Technology; Site Inspection; User-centered Design; User-centered Information And Communication Technology Tool; Safety Inspection Process; Occupational Safety; Job Safety; Analytical Learning Capacity; Communications Technology; Two-step User-centered Design Approach; Ipad Application; Innovative Uses; Consistent Data Collection; Construction; Advanced Safety-health Data Analysis Techniques; Construction Industry; Information Technology; Inspection; Occupational Health; User Centred Design; Construction Site Safety; Management-system; Design; Productivity
Azari, Rahman; Kim, Yong-Woo. (2016). Integration Evaluation Framework for Integrated Design Teams of Green Buildings: Development and Validation. Journal Of Management In Engineering, 32(3).
View Publication
Abstract
Integrated design (ID) process encourages integration of team members in the design phase of green building projects through intense collaborative processes and free exchange of information. Although integration in general and ID in particular have been well theorized by construction management research community, there exists no systematic mechanism in the field to help owners, architects, and managers of green project teams assess the level of integration in their projects' ID team environment in a practical manner. The key objective of the present article is therefore to use a qualitative-quantitative methodology to propose and validate an integration evaluation framework for green project teams and to statistically test the association between integration level and project success. The framework can be used by green project teams for comparison, benchmarking, or educational purposes and for integration evaluation and improvement in ID team environments. This research also provides empirical evidence to anecdotes suggesting positive link between team integration and project success in green projects.
Keywords
Architecture; Benchmark Testing; Buildings (structures); Construction Industry; Education; Information Management; Process Design; Project Management; Statistical Testing; Team Working; Integration Evaluation Framework; Integrated Design Process; Team Members; Green Building Project; Construction Management Research Community; Architect; Id Team Environment; Benchmarking; Educational Purpose; Information Exchange; Construction; Delivery; Evaluation; Integration; Integrated Design; Green Buildings; Validation; Context; Input; Process; And Product (cipp)
Ochsner, Jeffrey Karl. (2016). The Emergence of Regional Modernism in Seattle Architecture from the 1930s to the 1950s. Pacific Northwest Quarterly, 108(1), 12 – 28.
Wang, Guangbin; Song, Jiule. (2017). The Relation of Perceived Benefits and Organizational Supports to User Satisfaction with Building Information Model (BIM). Computers In Human Behavior, 68, 493 – 500.
View Publication
Abstract
In recent years, building information model (BIM) is becoming increasing popularity in architecture, engineering and construction (AEC) industry, many researchers and practitioners have verified the benefits of BIM as compared to traditional information technology, for example Autodesk CAD. As one of the key drivers of BIM adopt, BIM users are significantly impact on the success level of BIM implementation. As a factor leading to information system success and indicating the continuance intention after their initial adoption, BIM user satisfaction is studied in this work. Based on the data collected from 118 BIM engineers, this study examined the influence of five potential variables (such as attitude, perceived ease of use, perceived usefulness, top management support and management by objective) on BIM user satisfaction in AEC industry. The result from PLS (partial least square) showed that the perceived usefulness, top management support and management by objective are significantly associated with BIM user satisfaction, and the influence of management by objective on BIM user satisfaction is much stronger than top management support and perceived usefulness. Besides, perceived ease of use and attitude have a significant influence on perceived usefulness. Moreover, top management support is found to be positive associated with management by objective. Finally, the discussion of these results was presented. (C) 2016 Elsevier Ltd. All rights reserved.
Keywords
Personal-computer Utilization; Technology; Acceptance; Management; Success; Systems; Pls; Attributes; Objectives; Variables; Bim User Satisfaction; Perceived Ease Of Use; Perceived Usefulness; Top Management Support; Management By Objective
Ochsner, Jeffrey Karl. (2018). The Experience of Prospect and Refuge: Frank Lloyd Wright’s Houses as Holding Environments. American Imago, 75(2), 179 – 211.
View Publication
Keywords
Reverie
Moudon, Anne Vernez. (2019). Introducing Supergrids, Superblocks, Areas, Networks, and Levels to Urban Morphological Analyses. Iconarp International Journal Of Architecture And Planning, 7, 1 – 14.
View Publication
Abstract
Urban morphological analyses have identified the parcel (plot), the building type, or the plan unit (tessuto in Italian) as the basic elements of urban form. As cities have grown in geographic size disproportionately to their growth in population over the past seven decades, new elements have been introduced that structure their form. This essay describes these new elements and proposes that they be formally recognized in urban morphology. It introduces a conceptual framework for a multilevel structure of urban space using areas and networks and including supergrids and superblocks to guide morphological analyses.
Keywords
Morphological Elements; A Posteriori Approach; A Priori Approach
Huang, M.; Simonen, K. (2020). Comparative Environmental Analysis of Seismic Damage in Buildings. Journal Of Structural Engineering, 146(2).
View Publication
Abstract
In studying the environmental impacts of buildings, earthquake hazards are rarely considered, but their environmental impacts can be significant. This case study paper demonstrates how the US Federal Emergency Management Agency's Performance Assessment Calculation Tool (PACT) can be used to analyze the environmental impacts of buildings using probabilistic seismic hazard assessment. PACT was used to evaluate 10 case study buildings that varied by five types of lateral systems and two risk categories. For each building, PACT generated 1,000 realizations at five earthquake intensities. The resulting environmental impacts were analyzed according to their distribution, median, and average values, and the differences among building component types, risk categories, and lateral force-resisting systems were explored. In this study, building components that were categorized under Exterior Enclosures, Interior Finishes, and Heating, Ventilation, and Air-Conditioning (HVAC) produced notably higher environmental impacts in response to seismic damage, and their vulnerability to displacement- or acceleration-induced damage could be attributed to the characteristics of the lateral systems. Although these observations are notable, they should not be taken as universally applicable to all buildings. Instead, these findings exemplify how the environmental impact results from PACT can be analyzed and interpreted to address both the seismic and environmental aspects of building design. (C) 2019 American Society of Civil Engineers.
Keywords
Impact
Abdirad, Hamid; Dossick, Carrie S.; Johnson, Brian R.; Migliaccio, Giovanni. (2021). Disruptive Information Exchange Requirements in Construction Projects: Perception and Response Patterns. Building Research And Information, 49(2), 161 – 178.
View Publication
Abstract
The current proliferation of custom information exchange initiatives in projects disrupts information exchange routines of design and construction firms. This paper investigates how firms perceive, interpret, and act upon information exchange requirements that do not align with their existing routines. This case study examines a construction project for which the owner specified highly custom requirements for digital production and delivery of project submittals. Using ethnographic methods, the project parties' existing routines and their patterns of perceiving and responding to the requirements were identified. These patterns showed that the parties perceived disruptions to the existing dispositions and rules that guided their routines and shaped their performance across projects. The project parties used a combination of deductive, inductive, and abductive reasoning mechanisms to interpret the requirements, expose the inefficiencies associated with their workflows, and set new ground rules for action. The grounded propositions in this study hold that the limited opportunities for inductive reasoning and reflective assessment of workflows in projects can press project parties into identifying alternative workflows through cognitive search and abductive reasoning. This, in turn, results in highly situated, temporary, and fragmented workflows that are not durable and effective to contribute to refinement of existing information exchange routines.
Keywords
Construction Industry; Abductive Reasoning; Cognitive Searches; Construction Projects; Design And Construction; Ethnographic Methods; Inductive Reasoning; Information Exchange Requirements; Information Exchanges; Organizational Routines; Risk; Bim; Implementation; Innovation; Information Exchange; Disruptive Requirements; Routines; Construction Companies; Cognitive Ability; Project Engineering; Reasoning
Roca, Pere; Liew, Andrew; Block, Philippe; Lopez, David Lopez; Echenagucia, Tomás Méndez; Van Mele, Tom. (2022). A Three-Dimensional Approach to the Extended Limit Analysis of Reinforced Masonry. Structures, 35, 1062 – 1077.
View Publication
Abstract
The Extended Limit Analysis of Reinforced Masonry (ELARM) is a simple and user-friendly method for the design and structural analysis of singly-curved, reinforced tile vaults [1]. It is based on limit analysis but takes into account the reinforcement's contribution to the composite cross-section's bending capacity.& nbsp;A three-dimensional approach to ELARM is presented in this paper. The theoretical framework to understand the implications and limitations of extending ELARM to fully 3D structures is described, together with the strategies to carry out the leap from 2D to 3D. This extension is a lower-bound approach for the design of reinforced masonry, reinforced concrete and concrete-masonry composite shells and the assessment of their strength and stability against external loading.& nbsp;The new, extended method is implemented computationally to speed up the iterative processes, provide quick structural feedback, offer immediate results and allow for user-interactive form-finding and optimisation procedures. Different applications of the developed tool are described through the presentation of examples, including reinforcement optimisation, a form-finding process and a case with a shape beyond funicular geometry.
Keywords
Tile Vault; Masonry; Reinforced Brick; Formwork; Concrete Shells; Limit Analysis; Thrust Network Analysis; Extended Limit Analysis Of Reinforced Masonry; Tile Vaults
Ilyas, Salman; Emery, Ashley; Heerwagen, Judith; Heerwagen, Dean. (2012). Occupant Perceptions of an Indoor Thermal Environment in a Naturally Ventilated Building. Ashrae Transactions, 118(2), 114 – 121.
View Publication
Abstract
A strong emphasis is currently being placed on the use of natural ventilation as a means for providing a safe and healthful indoor environment as part of green building programs. There has been an increasing interest in developing natural ventilation design strategies that can furnish adequate fresh air to the building interior and simultaneously control the indoor air quality effectively, while providing significant energy savings. In naturally ventilated spaces, furnishing a suitable air exchange rate between the building exterior and interior can create a thermally comfortable and healthy indoor environment. However, the air exchange must occur such that the indoor air quality of the building is not compromised and thermally comfortable conditions for the occupants can be maintained. Architecture Hall is a recently renovated, naturally ventilated building located on the University of Washington campus in Seattle. The natural ventilation in this building was evaluated using a variety of experimental techniques, which included measurement of carbon dioxide (CO2) levels, air exchange rates and air velocities. High CO2 concentrations are a good indicator of inadequate ventilation rates and poor air movement in a space. Hence, a number of standards and certification programs specify the use of outdoor air monitoring based on CO2 concentrations in an occupied space. Occupant surveys, based on a U.S. EPA study, were also administered to understand and analyse occupant perceptions about the indoor thermal environment and to identify the prevalence of any building related illness symptoms. The discussion in this paper will focus on the findings of the occupant surveys and how they relate to the measured CO2 levels, air exchange rates and air velocities in the naturally ventilated spaces. The natural ventilation function in Architecture Hall is largely climate driven. For the period of November through March particularly, outside temperatures are quite low and windows are seldom opened by the occupants, in spite of a large number of occupants being dissatisfied with the indoor environmental quality. Consequently, CO2 concentrations consistently exceed acceptable levels and very little air movement is recorded. [ABSTRACT FROM AUTHOR]; Copyright of ASHRAE Transactions is the property of ASHRAE and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Keywords
Thermal Comfort; Natural Ventilation; Energy Consumption Of Buildings; Indoor Air Quality; Heat Exchangers; Carbon Dioxide