Simonen, K.; Huang, M.; Aicher, C.; Morris, P. (2018). Embodied Carbon as a Proxy for the Environmental Impact of Earthquake Damage Repair. Energy And Buildings, 164, 131 – 139.
View Publication
Abstract
In evaluating the life cycle environmental impacts of buildings, the contributions of seismic damage are rarely considered. In order to enable a more comprehensive assessment of a building's environmental impact by accounting for seismic events, this project developed an environmental impact database of building component seismic damage - the largest of its kind known to date - by combining data from Carnegie Mellon University's Economic Input-Output Life Cycle Analysis (LCA) database with cost estimates of repair previously developed for FEMA's Performance Assessment Calculation Tool (PACT), a software that models probabilistic seismic damage in buildings. Fifteen indicators of environmental impacts were calculated for the repair of approximately 800 building components for up to five levels of seismic damage, capturing 'embodied' impacts related to cradle-to-gate manufacturing of building materials, products, and equipment. Analysis of the data revealed that non-structural and architectural finishes often dominated the environmental impacts of seismic damage per dollar spent in repair. A statistical analysis was performed on the data using Principal Component Analysis, confirming that embodied carbon, a popular metric for evaluating environmental impacts in building LCAs, is a suitable proxy for other relevant environmental impact metrics when assessing the impact of repairing earthquake damage of buildings. (C) 2018 Elsevier B.V. All rights reserved.
Keywords
Life-cycle Assessment; Input-output; Buildings; Life Cycle Assessment; Seismic Analysis; Performance-based Design; Economic Input-output; Principal Component Analysis; Energy And Climate Change; Architectural Engineering; Carbon; Carbon Cycle; Earthquake Damage; Earthquakes; Environmental Impact; Environmental Management; Databases; Finishes; Environmental Assessment; Building Components; Construction Materials; Life Cycle Engineering; Life Cycle Analysis; Data Bases; Damage Assessment; Aseismic Buildings; Statistical Analysis; Equipment Costs; Cost Estimates; Data Processing; Data Analysis; Seismic Activity; Cost Analysis; Principal Components Analysis; Performance Assessment; Life Cycles; Repair; Impact Damage; Building Materials; Economic Analysis; Software
Ottesen, Jeffery L.; Martin, Greta A. (2019). Bare Facts and Benefits of Resource-Loaded CPM Schedules. Journal Of Legal Affairs And Dispute Resolution In Engineering And Construction, 11(3).
View Publication
Abstract
Forum papers are thought-provoking opinion pieces or essays founded in fact, sometimes containing speculation, on a civil engineering topic of general interest and relevance to the readership of the journal. The views expressed in this Forum article do not necessarily reflect the views of ASCE or the Editorial Board of the journal.
Ianchenko, Alex; Simonen, Kathrina; Barnes, Clayton. (2020). Residential Building Lifespan and Community Turnover. Journal Of Architectural Engineering, 26(3).
View Publication
Abstract
Environmental impact studies within the built environment rely on predicting building lifespan to describe the period of occupation and operation. Most life cycle assessments (LCAs) are based on arbitrary lifespan values, omitting the uncertainties of assessing service life. This research models the lifespan of American residential housing stock as a probabilistic survival distribution based on available data from the American Housing Survey (AHS). The log-normal, gamma, and Weibull distributions were fit to demolition data from 1985 to 2009 and these three models were compared with one another using the Bayesian information criterion. Analysis revealed that the estimated average housing lifespan in the United States is 130 years given model assumptions, although a probabilistic approach to lifespan can yield higher accuracy on a case-by-case basis. Parameters for modeling housing lifespan as log-normal, gamma, and Weibull survival functions are published with the intent of further application in LCA. The application of probabilistic housing lifespan models to community-wide turnover and integration with existing simulations of natural disaster are proposed as potential ways to achieve community sustainability and resilience goals. (c) 2020 American Society of Civil Engineers.
Keywords
Energy-consumption; Service Life; Cycle; Demolition; Emissions; Design; Impact; Model; Housing Stock Lifetime; Residential Buildings; Housing Turnover; Life Cycle Assessment; Service Life Prediction
Altenberg Vaz, Nathan; Inanici, Mehlika. (2021). Syncing with the Sky: Daylight-Driven Circadian Lighting Design. Leukos, 17(3), 291 – 309.
View Publication
Abstract
The use of daylight in the built environment is often preferred to artificial light sources as its successful application can provide visual comfort and satisfaction along with the potential for significant energy savings. Exposure to daylight is also the primary source for stimulus that establishes a healthy day/night cycle in all living organisms. This is known as circadian rhythm. Newly discovered photoreceptors (intrinsically photosensitive retinal ganglion cells - ipRGC) within the mammalian eye, including humans, are specifically linked to the portion of the brain responsible for maintaining a healthy circadian rhythm. This discovery has led to a new subject area in the field of lighting design focused on controlling the spectrum of light that these photoreceptors are sensitive to. Currently, work in the field of circadian lighting design is concentrated on the use of artificial light sources for circadian stimulus. This is largely due to the advent of the widespread use of LED technology, which has proven that it can be a significant source of light that can delay or advance the circadian clock. The use of daylight to provide circadian stimulus has been a given in this field of design, however, there has not been very much research into how the built environment affects our ability to effectively receive this stimulus from daylight. In this research, the groundwork is established to start to create a set of guidelines to help architects and designers maximize the potential for daylight to provide circadian stimulus at the earliest stages of a project. This is accomplished through a series of lighting simulations that explore and test various architectural parameters that affect daylight-driven circadian lighting, with simultaneous consideration given to photopic lighting availability and visual comfort. The architectural parameters tested in this study included window head height, building orientation, shading devices, visual obstructions to the sky, and room depth. The results show that informed design decisions could maximize circadian potential in a given space, while achieving visually satisfactory luminous environments.
Keywords
Action Spectrum; Melanopsin; Environments; Sensitivity; Framework; Stimulus; Rod; Circadian Lighting; Daylight; Lighting Simulation; Alfa
Shim, Yukyung; Jeong, Jaemin; Jeong, Jaewook; Lee, Jaehyun; Kim, Yongwoo. (2022). Comparative Analysis of the National Fatality Rate in Construction Industry Using Time-series Approach and Equivalent Evaluation Conditions. International Journal Of Environmental Research And Public Health, 19(4).
View Publication
Abstract
Fatality rates such as fatalities per full-time equivalent workers are officially used to compare the risk level of the construction industry among various countries. However, each country evaluates the fatality rate using different conditions. This paper presents the comparison of fatality rates of various countries using conventional (national data) and pair (equivalent condition) methods through a time-series approach. The research was conducted in three stages. The risk level was evaluated in order in South Korea (1.54), Japan (0.84), Mexico (0.83), China (0.70), United Kingdom (0.15), and Singapore (0.13) in terms of national data. However, the risk level was re-evaluated in order in China (2.27), South Korea (2.05), Mexico (1.23), Singapore (0.98), Japan (0.80), and United Kingdom (0.47) in terms of equivalent conditions. The risk level of each can be changed when the fatality rate is compared under given equivalent conditions.
Keywords
Fatality Rate; Risk Level; Full-time Equivalent Workers; Equivalent Evaluation Conditions; Time-series Analysis; Occupational Accidents; United-states; Injuries; Korea; Work; Comparative Analysis; Equivalence; Manual Workers; Risk Levels; Construction Industry; Fatalities; Risk Assessment; Safety Management; Industrial Accidents; Environmental Protection; Time Series; Accident Investigations; United Kingdom--uk; South Korea; Mexico; United States--us; Singapore; China; Japan
The Aga Khan Award for Architecture (AKAA) recently announced 20 shortlisted projects for the 2022 Award cycle. The projects will compete for a share of the US$ 1 million prize, one of the largest in architecture. The 20 shortlisted projects were selected by an independent Master Jury from a pool of 463 projects nominated for the 15th Award Cycle (2020-2022). The Aga Khan Award for Architecture was established by His Highness the Aga Khan in 1977 to identify and encourage…
ARPA-E announced $5 million in funding to two universities—the University of Washington and University of California, Davis—working to develop life cycle assessment tools and frameworks associated with transforming buildings into net carbon storage structures. The funding is part of the Harnessing Emissions into Structures Taking Inputs from the Atmosphere (HESTIA) Exploratory Topic. Parametric Open Data for Life Cycle Assessment (POD | LCA) – $3,744,303 The University of Washington’s Carbon Leadership Forum will develop a rigorous and flexible parametric Life Cycle Assessment (LCA)…
Ann Marie Borys, Associate Professor in Architecture recently published a book titled American Unitarian Churches: Architecture of a Democratic Religion. The Unitarian religious tradition was a product of the same eighteenth-century democratic ideals that fueled the American Revolution and informed the founding of the United States. Its liberal humanistic principles influenced institutions such as Harvard University and philosophical movements like Transcendentalism. Yet, its role in the history of American architecture is little known and studied. In American Unitarian Churches, Ann Marie…
In 2021 the College of Built Environments launched the CBE Inspire Fund, designed to support CBE research activities for which a relatively small amount of support can be transformative. The second year of awards have just been announced, supporting five projects across 4 departments within the college as they address topics such as food sovereignty, anti-displacement, affordable housing, and health & wellbeing. This year’s awardees include: Defining the New Diaspora: Where Seattle’s Black Church Congregants Are Moving and Why Rachel…
Ken Tadashi Oshima is Professor in the Department of Architecture at the University of Washington, Seattle, where he teaches trans-national architectural history, theory and design. He has also been a visiting professor at the Harvard Graduate School of Design and UCLA, and has taught at Columbia University and the University of British Columbia. He earned an AB degree, magna cum laude, in East Asian studies and visual and environmental studies from Harvard College, an MArch degree from University of California,…