Lee, Namhun; Dossick, Carrie S.; Foley, Sean P. (2013). Guideline for Building Information Modeling in Construction Engineering and Management Education. Journal Of Professional Issues In Engineering Education And Practice, 139(4), 266 – 274.
View Publication
Keywords
Buildings (structures); Computer Aided Instruction; Construction Industry; Educational Courses; Management Education; Structural Engineering Computing; Building Information Modeling; Construction Engineering And Management Education; Cem Education; Bim; Cem Curriculum
Dzeng, Ren-jye; Lin, Ken-yu; Wang, Pei-ru. (2014). Building A Construction Procurement Negotiation Training Game Model: Learning Experiences And Outcomes. British Journal Of Educational Technology, 45(6), 1115 – 1135.
View Publication
Abstract
Game-based education is a promising method for encouraging student learning. Although learning construction procurement and negotiation require hands-on practice, in most construction management courses at the college level, this subject is taught by using lectures and case studies. In this study, a construction procurement and negotiation game was developed, and paper-based and web-based versions were implemented. The game enables students to play the role of contractors or suppliers and generate profits by negotiating and procuring or selling reinforcing steel in a simulated market with a probabilistic nature. The experimental results indicate that playing both versions of the game increased student learning motivation, satisfaction and outcomes. Students awarded the web-based game higher assessment scores than they did for the paper-based game. Students playing either version of the game also achieved higher test scores than students who were taught using the traditional approach did. However, for students with work experience, playing the paper-based game resulted in higher scores than the web-based game scores.
Keywords
Educational Games; Simulation Games In Education; Simulation Methods In Education; Game Theory; Academic Motivation; Learning; Contractors; Construction Industry Personnel; Education; Construction Procurement Negotiation Training Game Model; Learning Experiences; Game-based Education; Construction Procurement Learning; Negotiation Learning; Hands-on Practice; Construction Management Courses; Negotiation Game; Paper-based Version; Probabilistic Nature; Student Learning Motivation; Web-based Game; Higher Assessment Scores; Civil Engineering Computing; Computer Based Training; Computer Games; Construction; Educational Courses; Probability; Procurement; Instructional Simulation Game; Motivation; Impact; Achievement; Performance; Skills
Hyun Woo Lee; Anderson, S.M.; Yong-Woo Kim; Ballard, G.. (2014). Advancing Impact of Education, Training, and Professional Experience on Integrated Project Delivery. Practice Periodical On Structural Design And Construction, 19(1), 8 – 14.
View Publication
Abstract
With the increased interest in applying integrated forms of project delivery to complex and uncertain construction projects, the building industry has been experiencing an increased demand for integrated project delivery (IPD). With the trend, many empirical studies have examined the collaborative characteristics of IPD and reported that participants must make the necessary transition for its contractual, technological, and cultural requirements. However, little study has been done to investigate relevant education, training, or professional experience that can support the transition. In response, this study used an online survey that was designed to investigate the level and type of education, training, and professional experience of project members and their corresponding level of background knowledge for each IPD requirement. The key survey findings include (1) project members have the highest level of background knowledge on the cultural requirements of IPD, but the lowest level on the technological requirements; (2) the group with more design-build experience has more background knowledge; (3) the group that received an IPD kick-off training has more background knowledge; and (4) having a lean construction class can prepare students for the IPD environment. It is expected that the survey findings will advance the education, training, and levels of background knowledge of IPD participants, which will enhance their IPD experience accordingly.
Keywords
Buildings (structures); Construction Industry; Contracts; Cultural Aspects; Industrial Training; Professional Aspects; Project Management; Construction Project; Building Industry; Integrated Project Delivery; Ipd; Contractual Requirement; Cultural Requirement; Professional Experience; Design-build Experience; Training Impact; Education Impact
Stewart, Orion; Moudon, Anne Vernez; Claybrooke, Charlotte. (2014). Multistate Evaluation of Safe Routes to School Programs. American Journal Of Health Promotion, 28, S89 – S96.
View Publication
Abstract
Purpose. State Safe Routes to School (SRTS) programs provide competitive grants to local projects that support safe walking, bicycling, and other modes of active school travel (AST). This study assessed changes in rates of AST after implementation of SRTS projects at multiple sites across four states. Design. One-group pretest and posttest. Setting. Florida, Mississippi, Washington, and Wisconsin. Subjects. Convenience sample of 48 completed SRTS projects and 53 schools affected by a completed SRTS project. Intervention. State-funded SRTS project. Measures. AST was measured as the percentage of students walking, bicycling, or using any AST mode. SRTS project characteristics were measured at the project, school, and school neighborhood levels. Analysis. Paired-samples t-tests were used to assess changes in AST. Bivariate analysis was used to identify SRTS project characteristics associated with increases in AST. Data were analyzed separately at the project (n = 48) and school (n = 53) levels. Results. Statistically significant increases in AST were observed across projects in all four states. All AST modes increased from 12.9% to 17.6%; walking from 9.8% to 14.2%; and bicycling from 2.5% to 3.0%. Increases in rates of bicycling were negatively correlated with baseline rates of bicycling. Conclusion. State-funded SRTS projects are achieving one of the primary program goals of increasing rates of AST. They may be particularly effective at introducing bicycling to communities where it is rare. The evaluation framework introduced in this study can be used to continue tracking the effect of state SRTS programs as more projects are completed.
Keywords
Transportation Of School Children; Physical Activity Measurement; Health Promotion; Cycling; Walking; School Children -- United States; Bicycling; Children; Commuting; Health Focus: Fitness/physical Activity; Manuscript Format: Research; Outcome Measure: Behavioral; Prevention Research; Research Purpose: Program Evaluation; Schools; Setting: School; Strategy: Skill Building/behavior Change, Built Environment; Study Design: Quasi-experimental; Target Population Age: Youth; Target Population Circumstances: Geographic Location; Physical-activity; Mental-health; Travel; Association; Validity; Mode; Bus
Yocom, Ken. (2014). Building Watershed Narratives: An Approach for Broadening the Scope of Success in Urban Stream Restoration. Landscape Research, 39(6), 698 – 714.
View Publication
Abstract
The success of urban stream restoration is often measured through biophysical attributes, or the progress towards restoration of a notionally intact section of landscape. What remains understudied is how success can be defined across social, economic, as well as ecological parameters. This research offers a narrative approach for urban restoration research that serves as a chronotope for untangling the biophysical and sociocultural complexities of the contemporary urban environment. The framework of this approach is presented through a case study of a recent stream restoration project in Seattle, Washington. The findings highlight the need for urban stream restoration processes to be grounded within a sociocultural context that is interdependent with biophysical conditions, and recommends measures of project success to include community, educational and participatory goals.
Keywords
River Restoration; Landscape; Management; Catchment; Systems; History; People; Restoration; Success; Watershed; Narrative; Urban
Abdirad, Hamid; Dossick, Carrie S. (2016). BIM Curriculum Design in Architecture, Engineering, and Construction Education: A Systematic Review. Journal Of Information Technology In Construction, 21, 250 – 271.
Abstract
In the past several years, Building Information Modeling (BIM) adoption has grown significantly in the architecture, engineering, and construction (AEC) industry. In response to this trend, the industry and academia realized that BIM education in university curricula is an important requirement for satisfying educational demands of the industry, and a notable body of research has reported strategies AEC programs implemented to incorporate BIM in their curricula. However, no study has comprehensively reviewed and synthesized the research on sfrategies adopted by educators. To bridge this gap in the literature, this paper presents a systematic review of research on BIM curriculum design in AEC education. The authors report on the trends of research on BIM curriculum design (e.g. methods, timelines, and contexts) as well as a synthesis of implemented pedagogical strategies with detailed discussions on their implications and effectiveness across different studies and contexts. These strategies address a variety of important pedagogical issues such as enrolment of students, optional or required BIM use, important competencies and skills, tutoring methods, industry engagement, designing assignments, and assessment methods and criteria. This synthesis shows that designing pedagogical sfrategies for BIM education is complex and challenging, and AEC programs need to make trade-offs between advantages and disadvantages associated with these strategies. The results also highlight the need for more diverse research designs and settings to bridge the gaps identified in BIM curriculum research to date. Finally, the authors present a literature-based framework of BIM curriculum design sfrategies as well as a set of recommendations that can be used BIM educators and researchers as a guide for designing or assessing their BIM curricula in future research.
Keywords
Bridges; Curricula; Economic And Social Effects; Education; Information Theory; Personnel Training; Reviews; Students; Architecture; Engineering; And Constructions; Building Information Model; Bim; Curriculum Designs; Pedagogical Issues; Pedagogical Strategies; Research Designs; Systematic Review; University Curricula; Industry; Management; Building Information Modeling; Training; Curriculum; Review
Lin, Ken-yu; Lee, Wonil; Azari, Rahman; Migliaccio, Giovanni C. (2018). Training Of Low-literacy And Low-english-proficiency Hispanic Workers On Construction Fall Fatality. Journal Of Management In Engineering, 34(2).
View Publication
Abstract
The construction industry has made extensive efforts to improve the safety of its labor force through various approaches, including training. However, many construction workers in the United States are recent immigrants who lack English proficiency and do not possess sufficient literacy levels in their own language for training comprehension. This reduces the effectiveness of traditional text-dominated translated training materials, which depend on both literacy and proficiency in a language. Thus, in this study, the authors used three-dimensional (3D) visualization to overcome the communication barriers that hinder effective safety training for low-literacy (LL) and low-English-proficiency (LEP) construction workers. This article summarizes the contributions of a study sponsored by the Occupational Safety and Health Administration (OSHA) Susan Harwood Training Grant Program; it describes the methodology to develop scenario-based 3D training materials on fall safety for LL and LEP workers and to validate the effectiveness of the materials. The results show that 3D training materials improve interaction between trainer and trainee during safety training, facilitate learning processes, and can overcome some of the communication barriers that hinder effective safety training. (c) 2017 American Society of Civil Engineers.
Keywords
Chemical Hazards; Computer Based Training; Construction Industry; Hazardous Materials; Industrial Training; Occupational Health; Occupational Safety; Personnel; Safety; Low-literacy; Low-english-proficiency Hispanic Workers; Construction Fall Fatality; Extensive Efforts; Labor Force; Construction Workers; English Proficiency; Sufficient Literacy Levels; Training Comprehension; Training Materials; Three-dimensional Visualization; Communication Barriers; Effective Safety Training; Health Administration Susan Harwood Training Grant Program; Fall Safety; Occupational Injuries; United-states; Industry; Health; Education; Issues; Occupational Health And Safety; Training; Visualization; Fall Protection; Case Study
Jon, Ihnji. (2019). Resilience and ‘Technicity’: Challenges and Opportunities for New Knowledge Practices in Disaster Planning. Resilience-International Policies Practices and Discourses, 7(2), 107 – 125.
View Publication
Abstract
With increasing exposure to environmental catastrophes and natural hazards, the terminology of 'resilience' is becoming ubiquitous in the planning field. As a part of this continuing discussion, this paper examines how the concept of resilience has been used in disaster planning, especially with a focus on the creation and use of knowledge to 'build resilience' in response to potential future natural hazard events. In discussing the practice of creating and using knowledge in disaster planning, I draw insights from the interdisciplinary critical studies of science and technology literature, which has been developing rich discussions on the challenges we face in producing geographical knowledge. I demonstrate in this paper how resilience theory can be linked with the concept of 'technicity' used in the virtual geography literature, and how that association can have meaningful implications for the production and application of knowledge in disaster planning.
Keywords
Community Resilience; Adaptive Capacity; Vulnerability; Hazard; Risk; Sustainability; Participation; Geographies; Uncertainty; Complexity; Resilience; Technicity; Disaster Planning; Virtual Geography; Knowledge Practice
Abdirad, Hamid; Dossick, Carrie Sturts. (2020). Rebaselining Asset Data for Existing Facilities and Infrastructure. Journal Of Computing In Civil Engineering, 34(1).
View Publication
Abstract
This paper introduces rebaselining as a workflow for collecting reliable and verifiable asset management data for existing facilities and infrastructure. Reporting on two action research case studies with two public owners in the US, this research structures rebaselining in four phases: (1) preparing technology enablers, (2) collecting data from existing documents, (3) conducting field verification, and (4) updating asset management databases. These workflows address some of the common challenges in managing existing assets, including the fast-paced changes in asset data requirements, the inaccuracies in data and documentation of these existing assets portfolios, and the need to update data and documents over their life cycle. The findings set the groundwork for implementing workflow by mapping the rebaselining business processes in each phase, listing the technological requirements for these processes, and explaining the feasibility and examples of customizing building information modeling (BIM) platforms for rebaselining workflows. This customization of BIM platforms aims to offer simplified solutions that reduce the facility management staff's need for advanced BIM software knowledge.
Keywords
Asset Management; Building Management Systems; Business Data Processing; Database Management Systems; Facilities Management; Production Engineering Computing; Project Management; Risk Analysis; Software Tools; Reliable Asset Management Data; Verifiable Asset Management Data; Action Research Case Studies; Public Owners; Research Structures; Technology Enablers; Asset Management Databases; Facility Management Staff; Rebaselining Workflows; Technological Requirements; Rebaselining Business Processes; Existing Assets Portfolios; Documentation; Asset Data Requirements; Managing Existing Assets; Information; Bim; Existing Buildings; Infrastructure; Asset Data; Rebaselining
Shang, Luming; Migliaccio, Giovanni C. (2020). Demystifying Progressive Design Build: Implementation Issues and Lessons Learned through Case Study Analysis. Organization Technology And Management In Construction, 12(1), 2095 – 2108.
View Publication
Abstract
The design-build (DB) project delivery method has been used for several decades in the US construction market. DB contracts are usually awarded on the basis of a multicriteria evaluation, with price as one of the most salient criteria. To ensure the project's success, an owner usually has to invest enough time and effort during scoping and early design to define a program, scope, and budget, ready for procurement and price generation. However, this process can become a burden for the owner and may lengthen the project development duration. As an alternative to the traditional DB, the progressive design-build (PDB) approach permits the selection of the DB team prior to defining the project program and/or budget. PDB has the advantage of maintaining a single point of accountability and allowing team selection based mainly on qualifications, with a limited consideration of price. Under PDB, the selected team works with the project stakeholders during the early design stage, while helping the owner balance scope and budget. However, the key to the effectiveness of PDB is its provision for the ongoing and complete involvement of the owner in the early design phase. Due to the differences between PDB and the other project delivery methods (e.g., traditional DB), project teams must carefully consider several factors to ensure its successful implementation. The research team conducted a case study of the University of Washington's pilot PDB project to complete the West Campus Utility Plant (WCUP). This paper carefully explores and summarizes the project's entire delivery process (e.g., planning, solicitation, design, and construction), its organizational structures, and the project performance outcomes. The lessons learned from the WCUP project will contribute to best practices for future PDB implementation.
Keywords
Progressive Design Build; Project Delivery Method