Alberti, Marina. (2015). Eco-Evolutionary Dynamics in an Urbanizing Planet. Trends In Ecology & Evolution, 30(2), 114 – 126.
View Publication
Abstract
A great challenge for ecology in the coming decades is to understand the role humans play in eco-evolutionary dynamics. If, as emerging evidence shows, rapid evolutionary change affects ecosystem functioning and stability, current rapid environmental change and its evolutionary effects might have significant implications for ecological and human wellbeing on a relatively short time scale. Humans are major selective agents with potential for unprecedented evolutionary consequences for Earth's ecosystems, especially as cities expand rapidly. In this review, I identify emerging hypotheses on how urbanization drives eco-evolutionary dynamics. Studying how human-driven micro-evolutionary changes interact with ecological processes offers us the chance to advance our understanding of eco-evolutionary feedbacks and will provide new insights for maintaining biodiversity and ecosystem function over the long term.
Keywords
Biological Evolution; Urbanization; Climate Change; Ecosystems; Well-being; Co-evolution; Eco-evolutionary Dynamics; Ecosystem Function; Urban Ecosystems; Ecological Consequences; Phenotypic Plasticity; Rapid Evolution; Regime Shifts; Elevated Co2; Biodiversity; Selection; Community; Patterns
Hou, Jeffrey. (2020). Governing Urban Gardens for Resilient Cities: Examining the ‘Garden City Initiative’ in Taipei. Urban Studies (Sage Publications, Ltd.), 57(7), 1398 – 1416.
View Publication
Abstract
With rising concerns for food security and climate adaptation, urban gardening and urban agriculture have emerged as a rising agenda for urban resilience around the world. In East Asia, a variety of initiatives have emerged in recent years with different levels of institutional support. Focusing on Taipei, where a vibrant urban agriculture movement has been unleashed in recent years, this article examines the ongoing outcomes of the city's new 'Garden City Initiative', which supports the establishment of urban gardens including community gardens, rooftop gardens and school gardens. Based on interviews and participant observations during the initial period of advocacy, planning and implementation between 2014 and 2017, this study examines the background of the programme, the involvement of governmental and non-governmental actors and the programme's ongoing implementation. Based on the findings, the article further reflects upon their implications for the practices of urban governance in the face of contemporary environmental, political and social challenges. The case of Taipei suggests a model in which policy formation and implementation may require opportunistic actions involving a variety of actors and organisations in both institutions and the civil society. Rather than dramatic changes or instant institutional realignment, the effort may require strategic adaptation of the existing bureaucratic structure, while mobilising its strengths and resources. In addition, despite the critical role of civil society organisations, the Taipei case also illustrates a considerable public-sector investment, distinct from the predominant model of neoliberal governance that has been associated with urban gardening programmes elsewhere.
Keywords
Urban Gardening; Urban Planning; Sustainability; Urban Agriculture; Local Government; Taipei (taiwan); 地方政府; 城市农业; 城市田园; 政策; 治理; 环境/可持续性; 规划; Environment/sustainability; Governance; Planning; Policy; Urban Gardens; Community Gardens; Food; Agriculture; Space; Inclusion; Systems; Environment; Realignment; Intervention; Social Change; Food Security; Civil Society; Initiatives; Gardens & Gardening; Policy Making; Neoliberalism; Resilience; Urban Farming; Gardening; Advocacy; Implementation; Roofs; Cities; Adaptation; Urban Areas; Gardens; Institutional Aspects; Bureaucracy; Policy Implementation; Environmental Policy; Climate Change Adaptation; Taipei Taiwan; Taiwan
Dyson, Karen; Yocom, Ken. (2015). Ecological Design For Urban Waterfronts. Urban Ecosystems, 18(1), 189 – 208.
View Publication
Abstract
Urban waterfronts are rarely designed to support biodiversity and other ecosystem services, yet have the potential to provide these services. New approaches that integrate ecological research into the design of docks and seawalls provide opportunities to mitigate the environmental impacts of urbanization and recover ecosystem function in urban waterfronts. A review of current examples of ecological design in temperate cities informs suggestions for future action. Conventional infrastructures have significant and diverse impacts on aquatic ecosystems. The impacts of conventional infrastructure are reduced where ecological designs have been implemented, particularly by projects adding microhabitat, creating more shallow water habitat, and reconstructing missing or altered rocky benthic habitats. Opportunities for future research include expanding current research into additional ecosystems, examining ecological processes and emergent properties to better address ecosystem function in ecological design, and addressing the impact of and best practices for continuing maintenance. Planned ecological infrastructure to replace aging and obsolete structures will benefit from design feedback derived from carefully executed in situ pilot studies.
Keywords
Coastal Defense Structures; Fixed Artificial Habitats; Marine Habitats; Intertidal Seawalls; Benthic Communities; Reconciliation Ecology; Subtidal Epibiota; Rocky Shores; Reef; Biodiversity; Ecological Design; Seawalls; Habitat; Waterfront; Urban Infrastructure; Aquatic Ecology
Schell, Christopher J.; Dyson, Karen; Fuentes, Tracy L.; Des Roches, Simone; Harris, Nyeema C.; Miller, Danica Sterud; Woelfle-Erskine, Cleo A.; Lambert, Max R. (2020). The Ecological and Evolutionary Consequences of Systemic Racism in Urban Environments. Science, 369(6510), 1446.
View Publication
Abstract
Urban areas are dynamic ecological systems defined by interdependent biological, physical, and social components. The emergent structure and heterogeneity of urban landscapes drives biotic outcomes in these areas, and such spatial patterns are often attributed to the unequal stratification of wealth and power in human societies. Despite these patterns, few studies have effectively considered structural inequalities as drivers of ecological and evolutionary outcomes and have instead focused on indicator variables such as neighborhood wealth. In this analysis, we explicitly integrate ecology, evolution, and social processes to emphasize the relationships that bind social inequities-specifically racism-and biological change in urbanized landscapes. We draw on existing research to link racist practices, including residential segregation, to the heterogeneous patterns of flora and fauna observed by urban ecologists. In the future, urban ecology and evolution researchers must consider how systems of racial oppression affect the environmental factors that drive biological change in cities. Conceptual integration of the social and ecological sciences has amassed considerable scholarship in urban ecology over the past few decades, providing a solid foundation for incorporating environmental justice scholarship into urban ecological and evolutionary research. Such an undertaking is necessary to deconstruct urbanization's biophysical patterns and processes, inform equitable and anti-racist initiatives promoting justice in urban conservation, and strengthen community resilience to global environmental change.
Keywords
New-york; Climate-change; Land-cover; Socioeconomic-status; Ecosystem Services; Oxidative Stress; Green Spaces; Gene Flow; Justice; Cities
Wilson, A. Meriwether W.; Mugerauer, Robert; Klinger, Terrie. (2015). Rethinking Marine Infrastructure Policy and Practice: Insights from Three Large-Scale Marina Developments in Seattle. Marine Policy, 53, 67 – 82.
View Publication
Abstract
The global transformation of the marine nearshore is generating profound losses of ecological and geomorphological functions and ecosystem services, as natural environments are replaced with built. With conservation a diminishing option and restoration often unrealistic, there is a need to rethink development and the potential for marine infrastructure to contribute to net environmental gain. Through analysis of 150 years of change associated with the development of three large-scale marinas in the Seattle area, this research identifies the ways in which evolving policy frameworks and ecological understanding determine the nature, efficiency and environmental outcomes of coastal marine developments. Decisions on infrastructure design, mitigation strategies and policy interpretations directly determined the ecological fate of marine biota inhabiting these structures as well as surrounding ecosystems. In spite of increasing evidence of environmental legislation driving mitigation and innovative engineering, the net ecological trajectories remained negative. There were no tested demonstrations of marine mitigation to confirm which measures would succeed. Where scientific understanding existed, the uptake into planning and legislation was slow. More broadly, this research highlights a need and opportunity to consider marine infrastructure as living laboratories to inform a policy shift from a no-net-loss paradigm to net-environmental-gain. This evolution is timely, with sea level rise requiring new approaches to coastal defenses and with marine energy infrastructure increasingly being located offshore, where there is little knowledge of the ecological changes occurring in both time and space. (C) 2014 Elsevier Ltd. All rights reserved.
Keywords
Coastal; Restoration; Landscape; Habitats; Science; Driver; Areas; Act; Marine Coastal Infrastructure; Ecological Mitigation; Novel Marine Habitats; Environmental Governance; Pacific Northwest
Shang, Luming; Lee, Hyun Woo; Dermisi, Sofia; Choe, Youngjun. (2020). Impact of Energy Benchmarking and Disclosure Policy on Office Buildings. Journal Of Cleaner Production, 250.
View Publication
Abstract
Building energy benchmarking policies require owners to publicly disclose their building's energy performance. In the US, the adoption of such policies is contributing to an increased awareness among tenants and buyers and is expected to motivate the owners of less efficient buildings to invest in energy efficiency improvements. However, there is a lack of studies specifically aimed at investigating the impact of such policies on office buildings among major cities through quantitative analyses. In response, this study evaluated the effectiveness of the benchmarking policy on energy efficiency improvements decision-making and on real estate performances, by applying two interrupted time series analyses to office buildings in downtown Chicago. The initial results indicate a lack of statistically strong evidence that the policy affected the annual vacancy trend of the energy efficient buildings (represented by ENERGY STAR labeled buildings). However, the use of interrupted time series in a more in-depth analysis shows that the policy is associated with a 6.7% decrease in vacancy among energy efficient buildings. The study proposed a method to quantitatively evaluate the impact of energy policies on the real estate performance of office buildings, and the result confirms the positive impact of energy-efficient retrofits on the real estate performance. The study findings support the reasoning behind the owners' decision in implementing energy efficiency improvements in their office buildings to remain competitive in the market. (C) 2019 Elsevier Ltd. All rights reserved.
Keywords
Office Buildings; Building Failures; Time Series Analysis; Real Property; Energy Consumption; Metropolis; Building Performance; Chicago (ill.); Building Energy Benchmarking And Disclosure Policies; Building Energy Efficiency; Time Series Modeling; Energy Star (program); Building Management Systems; Buildings (structures); Decision Making; Energy Conservation; Maintenance Engineering; Time Series; Disclosure Policy; Energy Benchmarking Policies; Building; Benchmarking Policy; Energy Efficiency Improvements Decision-making; Estate Performance; Energy Efficient Buildings; Energy Star; Energy Policies; Energy-efficient Retrofits; Interrupted Time-series; Regression; Behavior; Designs; Building Energy Benchmarking And; Disclosure Policies; Buildings; Cities; Energy Efficiency; Energy Policy; Markets; Quantitative Analysis; United States
ARPA-E announced $5 million in funding to two universities—the University of Washington and University of California, Davis—working to develop life cycle assessment tools and frameworks associated with transforming buildings into net carbon storage structures. The funding is part of the Harnessing Emissions into Structures Taking Inputs from the Atmosphere (HESTIA) Exploratory Topic. Parametric Open Data for Life Cycle Assessment (POD | LCA) – $3,744,303 The University of Washington’s Carbon Leadership Forum will develop a rigorous and flexible parametric Life Cycle Assessment (LCA)…
My research interests are in lean construction principles with a focus on lean project delivery systems, offsite and prefabrication construction, construction supply chain networks, and target value design. In addition to that my interests include life cycle project economics and modeling, building economic and quantitative risk analysis, a public-private partnership for projects, value engineering and management, and new technologies in construction.
My research interests focus on the contemporary problems of integrated architecture, engineering, and construction practices, particularly the communication processes and team workflows that support them. This work is at the intersection of AEC and the sociological and organizational theories that help identify and analyze the activities within professional practice collaboration. I am using qualitative studies to build theory and practice models for Lean Construction, sustainable design and construction, and integration across design, construction, and facility management. I am also working with technological constructs like BIM and COBie that form foundations for new kinds of collaboration.
I am a licensed architect, and have been a long-time educator in architecture and construction. I have taught design and construction studios, building detailing and assemblages, and architectural theory, and have been recognized institutionally and nationally for teaching excellence. My instructional research is focused on studio-based learning and design thinking.
I am interested in sustainable buildings with an emphasis on energy efficiency, health requirements, indoor air quality, incentives, and green financing. This interest is shaped by the emerging trend towards healthy buildings that improve the occupants’ productivity and health. My research agenda focuses on reconceptualizing sustainable building’s performance to meet the building’s health requirements and energy-efficiency and promote this in policy decision-making settings, including improving the risk responsiveness of codes and standards for building practices.