Skip to content

A Comparative Review of Polymer, Bacterial-based, and Alkali-Activated (also Geopolymer) Binders: Production, Mechanical, Durability, and Environmental impacts (life cycle assessment (LCA))

Nodehi, M., Aguayo, F., Madey, N., & Zhou, L. (2024). A Comparative Review of Polymer, Bacterial-based, and Alkali-Activated (also Geopolymer) Binders: Production, Mechanical, Durability, and Environmental impacts (life cycle assessment (LCA)). Construction & Building Materials, 422. https://doi.org/10.1016/j.conbuildmat.2024.135816
View Publication

Abstract

This review paper presents a comparative evaluation of polymer, bacterial-based, alkali-activated, and geopolymer binders in regard to their production methods, mechanical properties, their environmental/life cycle assessment (LCA), and durability when exposed to deteriorating cycles (such as sulfates, acids, and high temperatures). The significance of this study is to compare the results of over 400 journal papers, which present an in-depth analysis of fresh and hardened state properties of various binders that are advocated in the literature. Historically, Portland cement is generally considered a binder that plays a major role in any cementitious composites because of its high availability, and relatively inexpensive cost. Despite its significant benefits, it is known that the manufacturing process of Portland cement is energy and carbon intensive, and the resulted material often has shortcomings when exposed to deteriorating causes such as sulfates, acids, and high temperatures. However, recent movement toward net-zero as well as ultra-high-performance practices has increased the need for a more sustainable and durable binding system. Based on the result of this paper, each binder presents specific advantages when compared to Portland cement for specific applications that can be a better choice for their ultra-high capabilities and ecological properties. This includes the significantly better performance of alkali-activated binders (specifically geopolymers), under high temperatures, or very rapid strength gain of polymer (e.g., epoxy, polyester, and vinyl ester) binders, making them great alternatives to Portland cement, for rapid repair and rehabilitation purposes. Similarly, bacterial concrete also have certain capabilities such as long term durability and the potential for a continued self-repair or self-healing. In terms of environmental impacts, however, polymer binders are heavily depedant on their source of energy (e.g., petroleum vs. bio-based resins) while alkali-activated concretes and geopolymers have activators' large contributions to overall LCA impact categories. For bacterial binders, the used urea and nutrition can play a key role in their LCA results. Finally, based on the highlighted capabilities of each binder, recommendations on performance-based or hybrid design methods and specifications for an optimized system are also provided. Novel areas in polymer, bacterial-based, alkali-activated, and geopolymer binders are also included.

Keywords

Binding agents; Polymer concreteBacterial (or bio) concrete; Alkali-activated materials and geopolymer; Mechanical and durability properties

2024 CBE Inspire Fund Awardees Announced

The CBE Inspire Fund Awardees for the 2024 cycle have been selected! Their project names and team members are outlined below. Title: Mycelium Grow Lab for Student-led Research Team: Gundula Proksch (Associate Professor, Architecture), Tyler Sprague (Associate Professor, Architecture) Title: Exhibition of the works of OUR: Office of (Un)certainty Research Team: Vikram Prakash (Professor, Architecture) Title: Emergence, Resilience, and Future(s) of Urban Informality in Seattle Team: Julie Johnson (Associate Professor, Landscape Architecture), Manish Chalana (Associate Professor, Urban Design and Planning)…

Artificial Intelligence in Performance-Driven Design: Theories, Methods, and Tools

View Publication

Abstract

Artificial Intelligence in Performance-Driven Design: Theories, Methods, and Tools explores the application of artificial intelligence (AI), specifically machine learning (ML), for performance modeling within the built environment. This work establishes the theoretical foundations and methodological frameworks for utilizing AI/ML, with an emphasis on multi-scale modeling encompassing energy flows, environmental quality, and human systems.

The book examines relevant practices, case studies, and computational tools that harness AI's capabilities in modeling frameworks, enhancing the efficiency, accuracy, and integration of physics-based simulation, optimization, and automation processes. Furthermore, it highlights the integration of intelligent systems and digital twins throughout the lifecycle of the built environment, to enhance our understanding and management of these complex environments.

This book also:
• Incorporates emerging technologies into practical ideas to improve performance analysis and sustainable design
• Presents data-driven methodologies and technologies that seamlessly integrate into modeling and design platforms
• Shares valuable insights for developing decarbonization pathways in urban buildings
• Includes contributions from expert researchers and educators across a range of related fields

Artificial Intelligence in Performance-Driven Design is ideal for architects, engineers, planners, and researchers involved in sustainable design and the built environment. It’s also of interest to students of architecture, building science and technology, urban design and planning, environmental engineering, and computer science and engineering.

An Ontological Analysis for Comparison of the Concepts of Sustainable Building and Intelligent Building

Borhani, A., Borhani, A., Dossick, C. S., & Jupp, J. (2024). An Ontological Analysis for Comparison of the Concepts of Sustainable Building and Intelligent Building. Journal of Construction Engineering and Management, 150(4). https://doi.org/10.1061/JCEMD4.COENG-13711

View Publication

Abstract

The concept of intelligent building is emerging in the contemporary built environment. Intelligent buildings aim to leverage digital technologies and information throughout the building’s life cycle (design, construction, and operation phases) to improve the building’s performance and value. In recent years, academic scholars and industry practitioners have made efforts to articulate the intelligent building concept and identify its components. However, there is still no commonly accepted definition for the term intelligent (or smart) building. Furthermore, the term is used interchangeably with similar terms such as sustainable building and high-performance building. The primary gaps in research are the lack of a holistic and clearly defined list of intelligent building components. This gap limits building stakeholders’ abilities to decide which technologies to implement in their buildings, prove its capabilities and advantages, and improve its performance. In response to the identified gaps, this research conceptualizes intelligent building in comparison with the concept of sustainable building. We identified the key components that each concept entails and conducted a comparative analysis of the identified components. The findings of this research include a categorization of intelligent building’s definitions which helps to conceptualize intelligent building and distinguish it from other similar concepts. In addition, the research team used the developed ontologies for intelligent and sustainable buildings to provide a fundamental overview of the structure of building evaluation systems and their different approaches for determining evaluation criteria. Overall, this study contributes to the body of knowledge by identifying and classifying components of intelligent buildings, which is a prerequisite for intelligent buildings’ evaluation. It also makes a distinction between the concepts of intelligent building and sustainable building in order to determine their context and applications.

 

Progress Update on CBE researchers selected for inaugural cohort of Urban@UW Research to Action Collaboratory

At the end of October, Urban@UW hosted the first ½-day Research to Action Collaboratory workshop session for more learning, sharing and productivity. The Just Circular Communities team attended and focused on solidifying and growing their network of community partners. The team is also working to build a broader definition of “circular economy.” Read more about the October workshop session here. —– May 18, 2023: College of Built Environments researchers are selected for inaugural cohort of the Urban@UW Research to Action…

To Achieve Goal Alignment by Inter-Organizational Incentives: A Case Study of a Hydropower Project

Wang, Y., Hu, S., Lee, H. W., Tang, W., Shen, W., & Qiang, M. (2023). To Achieve Goal Alignment by Inter-Organizational Incentives: A Case Study of a Hydropower Project. Buildings (Basel), 13(9), 2258–. https://doi.org/10.3390/buildings13092258

View Publication

Abstract

Although the use of incentives has been widely recognized as an effective project management tool, its application still needs specific exploration. Existing research on incentives mainly focuses on intra-organizational incentives, lacking systematic research with empirical evidence from the perspective of the inter-organizational level. To fill this research gap, this study conducted an in-depth investigation into the application and impacts of inter-organizational incentives by studying a typical case of a hydropower project. In this case, a series of innovative inter-organizational incentives, involving a multiple contractual incentive scheme concerning schedule, quality, safety, as well as environmental performance, is applied. Using a mixed methodology that included a document review, a questionnaire survey, and interviews, this case study revealed that inter-organizational incentives could effectively help promote goal alignment, stimulate cooperative inter-organizational relationships, and improve project performance. This research developed a novel classification of inter-organizational incentives and emphasized the importance of non-contractual and informal incentives, which were ignored in previous research. The results further highlight that while incentivized organizations generally value incentives according to their monetary intensity, their prioritization of goals is determined by various factors. Therefore, to achieve project goal alignment, the optimization of incentive schemes should comprehensively consider a variety of influencing factors rather than merely focusing on monetary intensity. These findings will help both academic researchers and industrial practitioners design and execute effective inter-organizational incentives for superior project performance, especially for those projects that pursue high sustainable performance with safety and environmental performance included.

Keywords

inter-organizational incentive; inter-organizational relationship; multiple incentive; motivation; goal alignment; relational contracting; contractual incentive; environment incentive; environment performance; project performance

Aaron Julius M. Lecciones

Research Interests: urban sustainability and resiliency, hybridized built environments, wetland city and wetland center typologies, nature-based solutions and scalable blue-green-gray infrastructure, human ecology and urban informatics in urban design

Haoyu Yue

Research Interests: Climate change and infrastructure planning, artificial intelligence and data science for social good/urban planning

Brook Waldman

Brook Waldman is a research engineer at the Carbon Leadership Forum, where he investigates the life cycle of building materials — their manufacture, use, and end-of-life  — and the environmental impacts that accompany those processes.  He also studies and aims to improve the methodologies and data behind the measurement and communication of those environmental impacts. At the CLF, he has been particularly involved in supporting the EC3 tool and developing the CLF Material Baselines.

Anber Rana

Anber Rana is a Researcher with Carbon Leadership Forum.