Skip to content

Examining the Association between Urban Green Space and Viral Transmission of Covid-19 during the Early Outbreak

Zhai, Wei; Yue, Haoyu; Deng, Yihan. (2022). Examining the Association between Urban Green Space and Viral Transmission of Covid-19 during the Early Outbreak. Applied Geography, 147.

View Publication

Abstract

Even though exposure to urban green spaces (UGS) has physical and mental health benefits during COVID-19, whether visiting UGS will exacerbate viral transmission and what types of counties would be more impacted remain to be answered. In this research, we adopted mobile phone data to measure the county-level UGS visi-tation across the United States. We developed a Bayesian model to estimate the effective production number of the pandemic. To consider the spatial dependency, we applied the geographically weighted panel regression to estimate the association between UGS visitation and viral transmission. We found that visitations to UGS may be positively correlated with the viral spread in Florida, Idaho, New Mexico, Texas, New York, Ohio, and Penn-sylvania. Especially noteworthy is that the spread of COVID-19 in the majority of counties is not associated with green space visitation. Further, we found that when people visit UGS, there may be a positive association be-tween median age and viral transmission in New Mexico, Colorado, and Missouri; a positive association between concentration of blacks and viral transmission in North Dakota, Minnesota, Wisconsin, Michigan, and Florida; and a positive association between poverty rate and viral transmission in Iowa, Missouri, Colorado, New Mexico, and the Northeast United States.

Keywords

Public Spaces; Viral Transmission; Covid-19; Extraterrestrial Beings; Covid-19 Pandemic; Smartphones; Cell Phones; Memes; Big Data; Urban Green Space; Geographical Information-system; Parks; Accessibility; Regression; Community; Stress; Health; Level

Celina Balderas Guzmán

Celina Balderas Guzmán, PhD, is Assistant Professor in the Department of Landscape Architecture. Dr. Balderas’ research spans environmental planning, design, and science and focuses on climate adaptation to sea level rise on the coast and urban stormwater inland. On the coast, her work demonstrates specific ways that the climate adaptation actions of humans and adaptation of ecosystems are interdependent. Her work explores how these interdependencies can be maladaptive by shifting vulnerabilities to other humans or non-humans, or synergistic. Using ecological modeling, she has explored these interdependencies focusing on coastal wetlands as nature-based solutions. Her work informs cross-sectoral adaptation planning at a regional scale.

Inland, Dr. Balderas studies urban stormwater through a social-ecological lens. Using data science and case studies, her work investigates the relationship between stormwater pollution and the social, urban form, and land cover characteristics of watersheds. In past research, she developed new typologies of stormwater wetlands based on lab testing in collaboration with environmental engineers. The designs closely integrated hydraulic performance, ecological potential, and recreational opportunities into one form.

Her research has been funded by major institutions such as the National Science Foundation, National Socio-Environmental Synthesis Center, UC Berkeley, and the MIT Abdul Latif Jameel Water and Food Systems Lab. She has a PhD in the Department of Landscape Architecture and Environmental Planning from the University of California, Berkeley. Previously, she obtained masters degrees in urban planning and urban design, as well as an undergraduate degree in architecture all from MIT.

Narjes Abbasabadi

Narjes Abbasabadi, Ph.D., is an Assistant Professor in the Department of Architecture at the University of Washington. Dr. Abbasabadi also leads the Sustainable Intelligence Lab. Abbasabadi’s research centers on sustainability and computation in the built environment. Much of her work focuses on advancing design research efforts through developing data-driven methods, workflows, and tools that leverage the advances in digital technologies to enable augmented intelligence in performance-based and human-centered design. With an emphasis on multi-scale exploration, her research investigates urban building energy flows, human systems, and environmental and health impacts across scales—from the scale of building to the scale of neighborhood and city.

Abbasabadi’s research has been published in premier journals, including Applied Energy, Building and Environment, Energy and Buildings, Environmental Research, and Sustainable Cities and Society. She received honors and awards, including “ARCC Dissertation Award Honorable Mention” (Architectural Research Centers Consortium (ARCC), 2020), “Best Ph.D. Program Dissertation Award” (IIT CoA, 2019), and 2nd place in the U.S. Department of Energy (DOE)’s Race to Zero Design Competition (DOE, 2018). In 2018, she organized the 3rd IIT International Symposium on Buildings, Cities, and Performance. She served as editor of the third issue of Prometheus Journal, which received the 2020 Haskell Award from AIA New York, Center for Architecture.

Prior to joining the University of Washington, she taught at the University of Texas at Arlington and the Illinois Institute of Technology. She also has practiced with several firms and institutions and led design research projects such as developing design codes and prototypes for low-carbon buildings. Most recently, she practiced as an architect with Adrian Smith + Gordon Gill Architecture (AS+GG), where she has been involved in major projects, including the 2020 World Expo. Abbasabadi holds a Ph.D. in Architecture from the Illinois Institute of Technology and Master’s and Bachelor’s degrees in Architecture from Tehran Azad University.

The San Francisco Peninsula’s Great Estates: Part I

Streatfield, David C. (2012). The San Francisco Peninsula’s Great Estates: Part I. Eden, 15(1), 1 – 14.

Abstract

The article presents a historical background of several great estates in San Francisco Peninsula in California known for their unique landscaping and special garden designs in the late 19th and early 20th centuries. It discusses the climate and settlement styles in the area and offers information on the earliest estates such as the El Cerrito created by merchant William Davis Merry Howard and the notable mid-Victorian estates such as the Millbrae estate of banker Darius Ogden Mills.

Keywords

Garden Design; Landscape Design; Landscape Gardening; San Francisco Peninsula (calif.); California

Environmental Benefits of Using Hybrid CLT Structure in Midrise Non-Residential Construction: An LCA Based Comparative Case Study in the U.S. Pacific Northwest

Pierobon, Francesca; Huang, Monica; Simonen, Kathrina; Ganguly, Indroneil. (2019). Environmental Benefits of Using Hybrid CLT Structure in Midrise Non-Residential Construction: An LCA Based Comparative Case Study in the U.S. Pacific Northwest. Journal Of Building Engineering, 26.

View Publication

Abstract

In this study, the cradle-to-gate environmental impact of a hybrid, mid-rise, cross-laminated timber (CLT) commercial building is evaluated and compared to that of a reinforced concrete building with similar functional characteristics. This study evaluates the embodied emissions and energy associated with building materials, manufacturing, and construction. Two alternative designs are considered for fire protection in the hybrid CLT building: 1) a 'fireproofing design', where gypsum wallboard is applied to the structural wood; and 2) a 'charring design', where two extra layers of CLT are added to the panel. The life cycle environmental impacts are assessed using TRACI 2.1 and the total primary energy is evaluated using the Cumulative Energy Demand impact method. Results show that an average of 26.5% reduction in the global warming potential is achieved in the hybrid CLT building compared to the concrete building, excluding biogenic carbon emissions. Except ozone depletion, where the difference in impact between scenarios is < 1%, replacing fireproofing with charring is beneficial for all impact categories. The embodied energy assessment of the building types reveals that, on average, the total primary energy in the hybrid CLT buildings and concrete building are similar. However, the non-renewable energy (fossil-based) use in the hybrid CLT building is 8% lower compared to that of the concrete building. As compared to the concrete building, additional 1,556 tCO(2)(e) and 2,567 tCO(2e) are stored in the wood components of the building (long-term storage of biogenic carbon) in the scenario with fireproofing and with charring, respectively.

Keywords

Wood; Concrete; Energy; Buildings; Impacts; Cross-laminated Timber; U.s. Pacific Northwest; Life Cycle Assessment; Cumulative Energy Demand; Biogenic Carbon; Carbon Storage

Detecting Patterns of Vertebrate Biodiversity Across the Multidimensional Urban Landscape

Alberti, Marina; Wang, Tianzhe. (2022). Detecting Patterns of Vertebrate Biodiversity Across the Multidimensional Urban Landscape. Ecology Letters, 25(4), 1027 – 1045.

View Publication

Abstract

Explicit characterisation of the complexity of urban landscapes is critical for understanding patterns of biodiversity and for detecting the underlying social and ecological processes that shape them. Urban environments exhibit variable heterogeneity and connectivity, influenced by different historical contingencies, that affect community assembly across scales. The multidimensional nature of urban disturbance and co-occurrence of multiple stressors can cause synergistic effects leading to nonlinear responses in populations and communities. Yet, current research design of urban ecology and evolutionary studies typically relies on simple representation of the parameter space that can be observed. Sampling approaches apply simple urban gradients such as linear transects in space or comparisons of urban sites across the urban mosaic accounting for a few variables. This rarely considers multiple dimensions and scales of biodiversity, and proves to be inadequate to explain observed patterns. We apply a multidimensional approach that integrates distinctive social, ecological and built characteristics of urban landscapes, representing variations along dimensions of heterogeneity, connectivity and historical contingency. Measuring species richness and beta diversity across 100 US metropolitan areas at the city and 1-km scales, we show that distinctive signatures of urban biodiversity can result from interactions between socioecological heterogeneity and connectivity, mediated by historical contingency.

Keywords

Urban Biodiversity; Biodiversity; Species Diversity; Urban Planning; Landscape Ecology; Metropolitan Areas; Beta Diversity; Multidimensional Landscape; Scaling; Spatial Scales; Species Richness; Urban Gradients; Vertebrate Species; Ecological-systems; Diversity; Urbanization; Conservation; Ecosystems; Heterogeneity; Connectivity; Population; Complexity; Evolution; Urban Environments; Synergistic Effect; Nonlinear Response; Research Design; Contingency; Urban Areas; Vertebrates

The San Francisco Peninsula’s Great Estates: Part II

Streatfield, David C. (2012). The San Francisco Peninsula’s Great Estates: Part II. Eden, 15(2), 1 – 17.

Abstract

This article discusses the landscaping of American country estates built in late 19th century in San Francisco Peninsula. These estates are mentioned to have been influenced by the growing popularity of gardening in Europe. Andrew Jackson, America's first landscape architecture practitioner, is cited for promoting garden styles derived from English precedents. Some of the noteworthy estates built during the first three decades of 20th century are also described like New Place and Green Gables.

Keywords

Landscape Gardening; Country Homes; Gardening; Landscape Architecture; Europe; Jackson, Andrew

Site Resource Inventories – A Missing Link in the Circular City’s Information Flow

Baganz, Gösta; Proksch, Gundula; Kloas, Werner; Wolf Lorleberg; Baganz, Daniela; Staaks, Georg; Lohrberg, Frank. (2020). Site Resource Inventories – A Missing Link in the Circular City’s Information Flow. Advances In Geosciences, 54, 23-32.

View Publication

Abstract

A circular city builds upon the principles of circular economy, which key concepts of reduce, reuse, recycle, and recover lead to a coupling of resources: products and by-products of one production process become the input of another one, often in local vicinity. However, sources, types and available quantities of underutilised resources in cities are currently not well documented. Therefore, there is a missing link in the information flow of the circular city between potential users and site-specific data. To close this gap, this study introduces the concept of a site resource inventory in conjunction with a new information model that can manage the data needed for advancing the circular city. A core taxonomy of terms is established as the foundation for the information model: the circular economy is defined as a network of circular economy entities which are regarded as black boxes and connected by their material and energy inputs and outputs. This study proposes a site resource inventory, which is a collection of infrastructural and building-specific parameters that assess the suitability of urban sites for a specific circular economy entity. An information model is developed to manage the data that allows the entities to effectively organise the allocation and use of resources within the circular city and its material and energy flows. The application of this information model was demonstrated by comparing the demand and availability of required alternative resources (e.g. greywater) at a hypothetical site comprising a commercial aquaponic facility (synergistic coupling of fish and vegetables production) and a residential building. For the implementation of the information model a proposal is made which uses the publicly available geodata infrastructure of OpenStreetMap and adopts its tag system to operationalise the integration of circular economy data by introducing new tags. A site resource inventory has the potential to bring together information needs and it is thus intended to support companies when making their business location decisions or to support local authorities in the planning process.

Keywords

Digital Mapping; Economics; By Products; Aquaponics; Economic Conditions; Fish; Spatial Data; Consumers; Food; Infrastructure; Energy Flow; Greywater; Information Flow; Biogas; Consumption; Residential Buildings; Taxonomy; Data; Resources; Sustainable Development; Urban Areas; Cities; Coupling

Farmers’ Strategies to Climate Change and Urbanization: Potential of Ecosystem-based Adaptation in Rural Chengdu, Southwest China

Zhong, Bo; Wu, Shuang; Sun, Geng; Wu, Ning. (2022). Farmers’ Strategies to Climate Change and Urbanization: Potential of Ecosystem-based Adaptation in Rural Chengdu, Southwest China. International Journal Of Environmental Research And Public Health, 19(2).

View Publication

Abstract

Ecosystem-based adaptation (EbA) is emerging as a cost-effective approach for helping people adapt to climate and non-climate changes. Nowadays, climate change and urbanization have affected agricultural systems, but it is not clear how rural communities have responded or adapted to those changes. Here, we chose two typical villages in the Chengdu Plain, southwest China, through sociological surveys on 90 local farmers with a semi-structured questionnaire, participatory observation, geospatial analysis of land use and land cover, and a literature review, to explore the local people's perception of changes or disturbances and their adaptation strategies from the perspective of EbA. The results showed that climate change and urbanization had impacted agricultural systems dramatically in the last 40 years. In two case-study sites, climate change and urbanization were perceived by most local farmers as the main drivers impacting on agricultural production, but various resource-use models containing abundant traditional knowledge or practices as well as modern tools, such as information communication technology (ICT), were applied to adapt to these changes. Moreover, culture service through the adaptive decoration of rural landscapes is becoming a new perspective for implementing an EbA strategy. Finally, our findings highlighted the potential value of an EbA strategy for sustaining urban-rural integrated development and enhancing the resilience of agricultural systems.

Keywords

Ecosystem-based Adaptation (eba); Chengdu Plain; Climate Change; Urbanization; Agricultural System; Traditional Knowledge Or Practice; Functioning Ecosystem; Agro-biodiversity; Resilience; Services; Diversity; Polls & Surveys; Spatial Analysis; Topography; Rural Communities; Biodiversity; Questionnaires; Adaptation; International Organizations; Land Use; Climate Change Adaptation; Canals; Irrigation; Land Cover; Ecosystems; Case Studies; Literature Reviews; Agriculture; Farmers; Environmental Economics; Sustainable Development; Rural Areas; Gross Domestic Product--gdp; Agricultural Production; Urban Areas; Cultural Heritage; China