Skip to content

Evaluation of Hazard Brochures Using Topic Viewing Durations: Application to Tsunami Evacuation Brochures

Lindell, Michael K; Jung, Meen Chel; Prater, Carla S; House, Donald H (2023). Evaluation of Hazard Brochures Using Topic Viewing Durations: Application to Tsunami Evacuation Brochures. Risk Analysis.

View Publication

Abstract

This study describes a novel method of assessing risk communication effectiveness by reporting an evaluation of a tsunami information brochure by 90 residents of three Pacific coast communities that are vulnerable to a Cascadia Subduction Zone earthquake and tsunami—Commencement Bay, Washington; Lincoln City, Oregon; and Eureka, California. Study participants viewed information that was presented in DynaSearch, an internet‐based computer system that allowed them to view text boxes and tsunami inundation zone maps. DynaSearch recorded the number of times each text box or map was clicked and the length of time that it was viewed. This information viewing phase was followed by questionnaire pages assessing important aspects of tsunami hazard and sources of tsunami warnings. Participants gave the longest click durations to what to do in the emergency period during earthquake shaking and in its immediate aftermath before a tsunami arrives—topics that should be displayed prominently in tsunami brochures and emphasized in talks to community groups. The smallest adjusted click durations were associated with advance preparations for a tsunami—topics that can be posted on websites whose URLs are printed in the brochures.

Keywords

DynaSearch; hazard awareness brochure; Protective Action Decision Model

Constructed Floating Wetlands: A “Safe‐to‐Fail” Study with Multi‐sector Participation

Rottle, Nancy, Bowles, Mason, Andrews, Leann, & Engelke, Jennifer (2023). Constructed Floating Wetlands: A “Safe‐to‐Fail” Study with Multi‐sector Participation. Restoration Ecology, 31(1).

View Publication

Abstract

The Duwamish River Floating Wetlands project designed, built, and deployed constructed floating wetlands in the estuary of the urban Duwamish River in Seattle, Washington, during the 2019 and 2020 outmigration seasons for juvenile salmon. Using a “safe‐to‐fail” methodology and adaptive management strategies, these innovative floating wetland prototypes were custom designed to provide the native plants, invertebrates and slow water habitat that juvenile salmon require during their transition from fresh to salt water, and were monitored for these outcomes. This paper will provide insight into the prototype designs, adaptive management strategies and plant performance, and unique public‐private‐academic‐community partnerships that supported 2 years of design and research.

Keywords

community science; cross‐sector collaboration; designed ecosystems; Duwamish River; ecological restoration; green infrastructure

Helping Rural Counties to Enhance Flooding and Coastal Disaster Resilience and Adaptation

In the United States, flooding is a leading cause of natural disasters, with congressional budget office estimates of $54 billion in loss each year. Although both urban and rural areas are highly vulnerable to flood hazards, most natural disaster resilience studies have focused primarily on urban areas, overlooking rural communities. One such area that has been overlooked are the numerous rural communities bordering the Great Lakes. These communities face unprecedented challenges due to rising water levels, particularly since 2012, which have resulted in increased coastal flood hazard. Despite their flooding risk, they continue to lack flood hazard assessments and inundation maps, exacerbating their vulnerability. The Federal Emergency Management Agency (FEMA) commonly recommend counties to use a freely available tool—called HAZUS to develop hazard mitigation plans and enhance community resilience and adaptation. However, the usage of HAZUS for rural communities is challenging  due to existing data gaps that limit the analytical potential of HAZUS in these communities. Continued use of standard datasets for HAZUS analysis by rural counties could likely leave the communities underprepared for future flood events. The proposed project’s vision is to develop methods that use remote sensing data resources and citizen engagement (crowdsourcing) to address current data gaps for improved flood hazard modeling and visualization that is scalable and transferable to rural communities.

The results of the project will expand the traditional frontiers of preparedness and resilience to natural disasters by drawing on the expertise and backgrounds of investigators working at the interface of geological engineering, civil engineering, computer science, marine engineering, urban planning, social science, and remote sensing. Specifically, the proposed research will promote intellectual discovery by i) improving our understanding of remote sensing data sources and open-source processing methods to assist rural communities in addressing the data gaps in flood hazard modeling, ii) developing sustainable geospatial visualization tools for communicating hazards to communities, iii) advancing our understanding of the utility of combining remote sensing and crowdsourcing to flood hazard delineation, iv) understanding ways to incentives the crowd for greater participation and accuracy in hazard in addressing natural disasters, and v) identifying critical community resilience indicators through crowdsourcing. These advancements will lead to prepared and resilient rural communities that can effectively mitigate hazards related to lake level rise and flooding.

Assessing the Expectations Gap – Impact on Critical Infrastructure Service Providers’ and Consumers’ Preparedness, and Response

While community lifeline service providers and local emergency managers must maintain coordinated response and recovery plans, their timelines may not match expectations of local consumers of lifeline services. Indeed, it is quite likely consumers have unrealistic expectations about lifeline restoration, which could explain current inadequate levels of disaster preparedness. This hypothesized expectation gap has received little attention because engineering research typically addresses providers’ capacities, whereas disaster research addresses household and business preparedness. Our project will address this neglected issue by assessing consumers’ (households, business owners/managers, nonprofit managers) expectations about lifeline system performance, and comparing them to lifeline provider capacity in a post-hazard event scenario (following a Cascadia subduction zone earthquake of 9.0 magnitude or greater) in two communities—Kirkland and Shoreline, WA (likely to experience most shaking in this scenario).

Our research will assess the role of the expectations gap in influencing consumers’ and providers’ preparedness as well as response. First, we estimate the gap between consumers and providers expectations using an earthquake scenario in two case study communities. We posit that low consumer preparedness for lifeline disruption is in part a function of low expectations that lengthy disruption will occur. Next, we test the effect of providing consumers and providers with information about this gap. Our proposed sharing estimates of lifeline restoration times should change these beliefs if our assumption about this specific basis for low preparedness is correct and if our audiences attend to, process, and act upon this information. In our longitudinal research, consumers (households, businesses, and nonprofits) and lifeline providers will complete two questionnaires each. Besides lifeline provider surveys, we will collect information about lifeline providers’ capabilities and work with them to estimate restoration times using an expert elicitation-based estimation framework. We will address the following research questions:

  1. What do consumers think is the likely level of critical lifeline disruption from an earthquake and the timeline for restoration?
  2. What are consumers’ current levels of preparedness for lifeline interruption?
  3. What do lifeline providers and an independent engineering expert think are providers’ capabilities to maintain and restore lifeline services?
  4. How do consumers’ expectations compare with providers’ capabilities (expectations gap)?
  5. How will this study’s feedback about the expectations gap affect consumers’ and providers’ lifeline resilience expectations, as well as their mitigation and preparedness intentions?

Improving Cascadia Subduction Zone Residents’ Tsunami Preparedness: Quasi-experimental Evaluation of an Evacuation Brochure

Lindell, Michael K.; Jung, Meen Chel; Prater, Carla S.; House, Donald H. (2022). Improving Cascadia Subduction Zone Residents’ Tsunami Preparedness: Quasi-experimental Evaluation of an Evacuation Brochure. Natural Hazards, 114(1), 849-881.

View Publication

Abstract

This study surveyed 227 residents in three US Pacific Coast communities that are vulnerable to a Cascadia subduction zone tsunami. In the Brochure condition, information was presented online, followed by questions about tsunamis. Respondents in the Comparison condition received the same questionnaire by mail but did not view the brochure. Respondents in the Brochure condition had higher levels of perceived information sufficiency than those in the Comparison condition about three of the five tsunami topics. Both conditions had generally realistic expectations about most tsunami warning sources. However, they had unrealistically high expectations of being warned of a local tsunami by social sources, such as route alerting, that could not be implemented before first wave arrival. They also had unrealistically high expectations being warned of a distant tsunami by ground shaking from the source earthquake, whose epicenter would be too far away for them to feel. Moreover, respondents in both conditions expected higher levels of personal property damage and family casualties than is the case for most hazards, but their levels of negative affective response were not especially high. Overall, only 10% of the sample accessed the tsunami brochure even when sent repeated contacts and the brochure demonstrated modest effects for those who did access it. These results suggest that state and local officials should engage in repeated personalized efforts to increase coastal communities' tsunami emergency preparedness because distribution of tsunami brochures has only a modest effect on preparedness.

Keywords

Subduction Zones; Tsunamis; Emergency Management; Tsunami Warning Systems; Brochures; Preparedness; Communities; Cascadia Subduction Zone Tsunami; Hazard Warnings; Quasi-experiment; Risk Communication; Risk Information-seeking; Natural Warning Signs; Earthquake; Awareness; Responses; Behavior; Model; Wellington; Hazard; Threat; Earthquakes; Casualties; Subduction; Vulnerability; Emergency Preparedness; Emergency Warning Programs; Levels; Seismic Activity; Property Damage; Shaking; Earthquake Damage; Subduction (geology); Disaster Management; Cascadia

Maximizing the Sustainability of Integrated Housing Recovery Efforts

El-Anwar, Omar; El-Rayes, Khaled; Elnashai, Amr S. (2010). Maximizing the Sustainability of Integrated Housing Recovery Efforts. Journal Of Construction Engineering And Management, 136(7), 794 – 802.

View Publication

Abstract

The large-scale and catastrophic impacts of Hurricanes Katrina and Rita in 2005 challenged the efficacy of traditional postdisaster temporary housing methods. To address these challenges, the U.S. Congress appropriated $400 million to the Department of Homeland Security to support alternative housing pilot programs, which encourage innovative housing solutions that will facilitate sustainable and permanent affordable housing in addition to serving as temporary housing. Facilitating and maximizing the sustainability of postdisaster alternative housing is an important objective that has significant social, economic, and environmental impacts. This paper presents the development of a novel optimization model that is capable of (1) evaluating the sustainability of integrated housing recovery efforts under the alternative housing pilot program and (2) identifying the housing projects that maximize sustainability. An application example is analyzed to demonstrate the use of the developed model and its unique capabilities in maximizing the sustainability of integrated housing recovery efforts after natural disasters.

Keywords

Northridge Earthquake; United-states; Disasters; Optimization; Postdisaster Alternative Housing; Sustainability; Housing Recovery

Understanding the Motivations of Coastal Residents to Voluntarily Purchase Federal Flood Insurance

Brody, Samuel D.; Highfield, Wesley E.; Wilson, Morgan; Lindell, Michael K.; Blessing, Russell. (2017). Understanding the Motivations of Coastal Residents to Voluntarily Purchase Federal Flood Insurance. Journal Of Risk Research, 20(6), 760 – 775.

View Publication

Abstract

Federally-backed flood insurance is the primary mechanism by which residents in the United States (US) prepare for and recover from floods. While there is a growing literature on the general uptake of flood insurance, little work has been done to address the factors motivating residents to voluntarily buy and maintain federally-based insurance policies. We address this issue by conducting a survey of coastal residents in four localities in Texas and Florida. Based on survey responses, we quantitatively examine the factors influencing whether residents located outside of the 100-year floodplain obtain insurance policies when it is not required. Using two-sample t-tests and binary logistic regression analysis to control for multiple contextual and psychological variables, we statistically isolate the factors contributing most to the decision to purchase insurance. Our findings indicate that a resident located outside the 100-year floodplain who has voluntarily purchased federal flood insurance can be characterized, on average, as more highly educated, living in relatively expensive homes, and a long-time resident who thinks about flood hazard relatively infrequently but who, nonetheless, thinks flood insurance is relatively affordable. Unexpectedly, the physical proximity of a respondent to flood hazard areas makes little or no discernible difference in the decision to obtain flood insurance.

Keywords

Action Decision-model; Hazard Adjustments; Risk; Perceptions; Adoption; Florida; Losses; Determinants; Preferences; Responses; Insurance; Floodplain; Purchase Decision; Texas

Comparative Environmental Analysis of Seismic Damage in Buildings

Huang, M.; Simonen, K. (2020). Comparative Environmental Analysis of Seismic Damage in Buildings. Journal Of Structural Engineering, 146(2).

View Publication

Abstract

In studying the environmental impacts of buildings, earthquake hazards are rarely considered, but their environmental impacts can be significant. This case study paper demonstrates how the US Federal Emergency Management Agency's Performance Assessment Calculation Tool (PACT) can be used to analyze the environmental impacts of buildings using probabilistic seismic hazard assessment. PACT was used to evaluate 10 case study buildings that varied by five types of lateral systems and two risk categories. For each building, PACT generated 1,000 realizations at five earthquake intensities. The resulting environmental impacts were analyzed according to their distribution, median, and average values, and the differences among building component types, risk categories, and lateral force-resisting systems were explored. In this study, building components that were categorized under Exterior Enclosures, Interior Finishes, and Heating, Ventilation, and Air-Conditioning (HVAC) produced notably higher environmental impacts in response to seismic damage, and their vulnerability to displacement- or acceleration-induced damage could be attributed to the characteristics of the lateral systems. Although these observations are notable, they should not be taken as universally applicable to all buildings. Instead, these findings exemplify how the environmental impact results from PACT can be analyzed and interpreted to address both the seismic and environmental aspects of building design. (C) 2019 American Society of Civil Engineers.

Keywords

Impact

Enabling The Development Of Base Domain Ontology Through Extraction Of Knowledge From Engineering Domain Handbooks

Hsieh, Shang-hsien; Lin, Hsien-tang; Chi, Nai-wen; Chou, Kuang-wu; Lin, Ken-yu. (2011). Enabling The Development Of Base Domain Ontology Through Extraction Of Knowledge From Engineering Domain Handbooks. Advanced Engineering Informatics, 25(2), 288 – 296.

View Publication

Abstract

Domain ontology, encompassing both concepts and instances, along with their relations and properties, is a new medium for the storage and propagation of domain specific knowledge. A significant problem remains the effort which must be expended during ontology construction. This involves collecting the domain-related vocabularies, developing the domain concept hierarchy, and defining the properties of each concept and the relationships between concepts. Recently several engineering handbooks have described detailed domain knowledge by organizing the knowledge into categories, sections, and chapters with indices in the appendix. This paper proposes the extraction of concepts, instances, and relationships from a handbook of a specific domain to quickly construct base domain ontology as a good starting point for expediting the development process of more comprehensive domain ontology. The extracted information can also be reorganized and converted into web ontology language format to represent the base domain ontology. The generation of a base domain ontology from an Earthquake Engineering Handbook is used to illustrate the proposed approach. In addition, quality evaluation of the extracted base ontology is performed and discussed. (C) 2010 Elsevier Ltd. All rights reserved.

Keywords

Ontology; Earthquake Engineering; World Wide Web; Theory Of Knowledge; Vocabulary; Programming Languages; Domain Handbook; Domain Ontology; Owl; Web Ontology Language; Knowledge Representation Languages; Ontologies (artificial Intelligence); Base Domain Ontology; Knowledge Extraction; Engineering Domain Handbooks; Domain Specific Knowledge Storage; Domain Specific Knowledge Propagation; Domain-related Vocabularies; Domain Concept Hierarchy; Development Process; Web Ontology Language Format; Earthquake Engineering Handbook; Semantic Web; Management; Design