Skip to content

Evaluation of Hazard Brochures Using Topic Viewing Durations: Application to Tsunami Evacuation Brochures

Lindell, Michael K; Jung, Meen Chel; Prater, Carla S; House, Donald H (2023). Evaluation of Hazard Brochures Using Topic Viewing Durations: Application to Tsunami Evacuation Brochures. Risk Analysis.

View Publication

Abstract

This study describes a novel method of assessing risk communication effectiveness by reporting an evaluation of a tsunami information brochure by 90 residents of three Pacific coast communities that are vulnerable to a Cascadia Subduction Zone earthquake and tsunami—Commencement Bay, Washington; Lincoln City, Oregon; and Eureka, California. Study participants viewed information that was presented in DynaSearch, an internet‐based computer system that allowed them to view text boxes and tsunami inundation zone maps. DynaSearch recorded the number of times each text box or map was clicked and the length of time that it was viewed. This information viewing phase was followed by questionnaire pages assessing important aspects of tsunami hazard and sources of tsunami warnings. Participants gave the longest click durations to what to do in the emergency period during earthquake shaking and in its immediate aftermath before a tsunami arrives—topics that should be displayed prominently in tsunami brochures and emphasized in talks to community groups. The smallest adjusted click durations were associated with advance preparations for a tsunami—topics that can be posted on websites whose URLs are printed in the brochures.

Keywords

DynaSearch; hazard awareness brochure; Protective Action Decision Model

Constructed Floating Wetlands: A “Safe‐to‐Fail” Study with Multi‐sector Participation

Rottle, Nancy, Bowles, Mason, Andrews, Leann, & Engelke, Jennifer (2023). Constructed Floating Wetlands: A “Safe‐to‐Fail” Study with Multi‐sector Participation. Restoration Ecology, 31(1).

View Publication

Abstract

The Duwamish River Floating Wetlands project designed, built, and deployed constructed floating wetlands in the estuary of the urban Duwamish River in Seattle, Washington, during the 2019 and 2020 outmigration seasons for juvenile salmon. Using a “safe‐to‐fail” methodology and adaptive management strategies, these innovative floating wetland prototypes were custom designed to provide the native plants, invertebrates and slow water habitat that juvenile salmon require during their transition from fresh to salt water, and were monitored for these outcomes. This paper will provide insight into the prototype designs, adaptive management strategies and plant performance, and unique public‐private‐academic‐community partnerships that supported 2 years of design and research.

Keywords

community science; cross‐sector collaboration; designed ecosystems; Duwamish River; ecological restoration; green infrastructure

Helping Rural Counties to Enhance Flooding and Coastal Disaster Resilience and Adaptation

In the United States, flooding is a leading cause of natural disasters, with congressional budget office estimates of $54 billion in loss each year. Although both urban and rural areas are highly vulnerable to flood hazards, most natural disaster resilience studies have focused primarily on urban areas, overlooking rural communities. One such area that has been overlooked are the numerous rural communities bordering the Great Lakes. These communities face unprecedented challenges due to rising water levels, particularly since 2012, which have resulted in increased coastal flood hazard. Despite their flooding risk, they continue to lack flood hazard assessments and inundation maps, exacerbating their vulnerability. The Federal Emergency Management Agency (FEMA) commonly recommend counties to use a freely available tool—called HAZUS to develop hazard mitigation plans and enhance community resilience and adaptation. However, the usage of HAZUS for rural communities is challenging  due to existing data gaps that limit the analytical potential of HAZUS in these communities. Continued use of standard datasets for HAZUS analysis by rural counties could likely leave the communities underprepared for future flood events. The proposed project’s vision is to develop methods that use remote sensing data resources and citizen engagement (crowdsourcing) to address current data gaps for improved flood hazard modeling and visualization that is scalable and transferable to rural communities.

The results of the project will expand the traditional frontiers of preparedness and resilience to natural disasters by drawing on the expertise and backgrounds of investigators working at the interface of geological engineering, civil engineering, computer science, marine engineering, urban planning, social science, and remote sensing. Specifically, the proposed research will promote intellectual discovery by i) improving our understanding of remote sensing data sources and open-source processing methods to assist rural communities in addressing the data gaps in flood hazard modeling, ii) developing sustainable geospatial visualization tools for communicating hazards to communities, iii) advancing our understanding of the utility of combining remote sensing and crowdsourcing to flood hazard delineation, iv) understanding ways to incentives the crowd for greater participation and accuracy in hazard in addressing natural disasters, and v) identifying critical community resilience indicators through crowdsourcing. These advancements will lead to prepared and resilient rural communities that can effectively mitigate hazards related to lake level rise and flooding.

Assessing the Expectations Gap – Impact on Critical Infrastructure Service Providers’ and Consumers’ Preparedness, and Response

While community lifeline service providers and local emergency managers must maintain coordinated response and recovery plans, their timelines may not match expectations of local consumers of lifeline services. Indeed, it is quite likely consumers have unrealistic expectations about lifeline restoration, which could explain current inadequate levels of disaster preparedness. This hypothesized expectation gap has received little attention because engineering research typically addresses providers’ capacities, whereas disaster research addresses household and business preparedness. Our project will address this neglected issue by assessing consumers’ (households, business owners/managers, nonprofit managers) expectations about lifeline system performance, and comparing them to lifeline provider capacity in a post-hazard event scenario (following a Cascadia subduction zone earthquake of 9.0 magnitude or greater) in two communities—Kirkland and Shoreline, WA (likely to experience most shaking in this scenario).

Our research will assess the role of the expectations gap in influencing consumers’ and providers’ preparedness as well as response. First, we estimate the gap between consumers and providers expectations using an earthquake scenario in two case study communities. We posit that low consumer preparedness for lifeline disruption is in part a function of low expectations that lengthy disruption will occur. Next, we test the effect of providing consumers and providers with information about this gap. Our proposed sharing estimates of lifeline restoration times should change these beliefs if our assumption about this specific basis for low preparedness is correct and if our audiences attend to, process, and act upon this information. In our longitudinal research, consumers (households, businesses, and nonprofits) and lifeline providers will complete two questionnaires each. Besides lifeline provider surveys, we will collect information about lifeline providers’ capabilities and work with them to estimate restoration times using an expert elicitation-based estimation framework. We will address the following research questions:

  1. What do consumers think is the likely level of critical lifeline disruption from an earthquake and the timeline for restoration?
  2. What are consumers’ current levels of preparedness for lifeline interruption?
  3. What do lifeline providers and an independent engineering expert think are providers’ capabilities to maintain and restore lifeline services?
  4. How do consumers’ expectations compare with providers’ capabilities (expectations gap)?
  5. How will this study’s feedback about the expectations gap affect consumers’ and providers’ lifeline resilience expectations, as well as their mitigation and preparedness intentions?

Improving Cascadia Subduction Zone Residents’ Tsunami Preparedness: Quasi-experimental Evaluation of an Evacuation Brochure

Lindell, Michael K.; Jung, Meen Chel; Prater, Carla S.; House, Donald H. (2022). Improving Cascadia Subduction Zone Residents’ Tsunami Preparedness: Quasi-experimental Evaluation of an Evacuation Brochure. Natural Hazards, 114(1), 849-881.

View Publication

Abstract

This study surveyed 227 residents in three US Pacific Coast communities that are vulnerable to a Cascadia subduction zone tsunami. In the Brochure condition, information was presented online, followed by questions about tsunamis. Respondents in the Comparison condition received the same questionnaire by mail but did not view the brochure. Respondents in the Brochure condition had higher levels of perceived information sufficiency than those in the Comparison condition about three of the five tsunami topics. Both conditions had generally realistic expectations about most tsunami warning sources. However, they had unrealistically high expectations of being warned of a local tsunami by social sources, such as route alerting, that could not be implemented before first wave arrival. They also had unrealistically high expectations being warned of a distant tsunami by ground shaking from the source earthquake, whose epicenter would be too far away for them to feel. Moreover, respondents in both conditions expected higher levels of personal property damage and family casualties than is the case for most hazards, but their levels of negative affective response were not especially high. Overall, only 10% of the sample accessed the tsunami brochure even when sent repeated contacts and the brochure demonstrated modest effects for those who did access it. These results suggest that state and local officials should engage in repeated personalized efforts to increase coastal communities' tsunami emergency preparedness because distribution of tsunami brochures has only a modest effect on preparedness.

Keywords

Subduction Zones; Tsunamis; Emergency Management; Tsunami Warning Systems; Brochures; Preparedness; Communities; Cascadia Subduction Zone Tsunami; Hazard Warnings; Quasi-experiment; Risk Communication; Risk Information-seeking; Natural Warning Signs; Earthquake; Awareness; Responses; Behavior; Model; Wellington; Hazard; Threat; Earthquakes; Casualties; Subduction; Vulnerability; Emergency Preparedness; Emergency Warning Programs; Levels; Seismic Activity; Property Damage; Shaking; Earthquake Damage; Subduction (geology); Disaster Management; Cascadia

Exposure Path Perceptions and Protective Actions in Biological Water Contamination Emergencies

Lindell, Michael K.; Mumpower, Jeryl L.; Huang, Shih-kai; Wu, Hao-che; Samuelson, Charles D. (2015). Exposure Path Perceptions and Protective Actions in Biological Water Contamination Emergencies. Environmental Health Insights, 9, 13 – 21.

View Publication

Abstract

This study extends the Protective Action Decision Model, developed to address disaster warning responses in the context of natural hazards, to boil water advisories. The study examined 110 Boston residents' and 203 Texas students' expectations of getting sick through different exposure paths for contact with contaminated water. In addition, the study assessed respondents' actual implementation (for residents) or behavioral expectations (for students) of three different protective actions - bottled water, boiled water, and personally chlorinated water - as well as their demographic characteristics and previous experience with water contamination. The results indicate that people distinguish among the exposure paths, but the differences are small (one-third to one-half of the response scale). Nonetheless, the perceived risk from the exposure paths helps to explain why people are expected to consume (or actually consumed) bottled water rather than boiled or personally chlorinated water. Overall, these results indicate that local authorities should take care to communicate the relative risks of different exposure paths and should expect that people will respond to a boil water order primarily by consuming bottled water. Thus, they should make special efforts to increase supplies of bottled water in their communities during water contamination emergencies.

Keywords

Water Contamination; Exposure Paths; Risk Perception; Protective Action

Embodied Carbon as a Proxy for the Environmental Impact of Earthquake Damage Repair

Simonen, K.; Huang, M.; Aicher, C.; Morris, P. (2018). Embodied Carbon as a Proxy for the Environmental Impact of Earthquake Damage Repair. Energy And Buildings, 164, 131 – 139.

View Publication

Abstract

In evaluating the life cycle environmental impacts of buildings, the contributions of seismic damage are rarely considered. In order to enable a more comprehensive assessment of a building's environmental impact by accounting for seismic events, this project developed an environmental impact database of building component seismic damage - the largest of its kind known to date - by combining data from Carnegie Mellon University's Economic Input-Output Life Cycle Analysis (LCA) database with cost estimates of repair previously developed for FEMA's Performance Assessment Calculation Tool (PACT), a software that models probabilistic seismic damage in buildings. Fifteen indicators of environmental impacts were calculated for the repair of approximately 800 building components for up to five levels of seismic damage, capturing 'embodied' impacts related to cradle-to-gate manufacturing of building materials, products, and equipment. Analysis of the data revealed that non-structural and architectural finishes often dominated the environmental impacts of seismic damage per dollar spent in repair. A statistical analysis was performed on the data using Principal Component Analysis, confirming that embodied carbon, a popular metric for evaluating environmental impacts in building LCAs, is a suitable proxy for other relevant environmental impact metrics when assessing the impact of repairing earthquake damage of buildings. (C) 2018 Elsevier B.V. All rights reserved.

Keywords

Life-cycle Assessment; Input-output; Buildings; Life Cycle Assessment; Seismic Analysis; Performance-based Design; Economic Input-output; Principal Component Analysis; Energy And Climate Change; Architectural Engineering; Carbon; Carbon Cycle; Earthquake Damage; Earthquakes; Environmental Impact; Environmental Management; Databases; Finishes; Environmental Assessment; Building Components; Construction Materials; Life Cycle Engineering; Life Cycle Analysis; Data Bases; Damage Assessment; Aseismic Buildings; Statistical Analysis; Equipment Costs; Cost Estimates; Data Processing; Data Analysis; Seismic Activity; Cost Analysis; Principal Components Analysis; Performance Assessment; Life Cycles; Repair; Impact Damage; Building Materials; Economic Analysis; Software

Multi-Hazard Perceptions at Long Valley Caldera, California, USA

Peers, Justin B.; Lindell, Michael K.; Gregg, Christopher E.; Reeves, Ashleigh K.; Joyner, Andrew T.; Johnston, David M. (2021). Multi-Hazard Perceptions at Long Valley Caldera, California, USA. International Journal Of Disaster Risk Reduction, 52.

View Publication

Abstract

Caldera systems such as Long Valley Caldera, California; Taupo, New Zealand; and Campi Flegrei, Italy, experience centuries to millennia without eruption, but have the potential for large eruptions. This raises questions about how local residents' behavioral responses to these low-probability high-consequence events differ from their responses to events, such as wildfires and earthquakes, that have higher probabilities. To examine this issue, a multi-hazard mail survey of 229 households explored perceptions of-and responses to-volcano, earthquake and wildfire hazards in the Long Valley Volcanic Region. Response efficacy was the only significant predictor of emergency preparedness, which suggests that hazard managers can increase household emergency preparedness by emphasizing this attribute of protective actions. In addition to response efficacy, expected personal consequences, hazard intrusiveness, and affective responses were all significantly related to information seeking. This indicates that hazard managers can also increase households' information seeking about local hazards and appropriate protective actions by communicating the certainty and severity of hazard impacts (thus increasing expected personal consequences) and that they communicate this information repeatedly (thus increasing hazard intrusiveness) to produce significant emotional involvement (thus increasing affective response).

Keywords

Households Expected Responses; Risk Information-seeking; Volcanic Risk; Earthquake; Model; Adjustment; Mitigation; Communication; Preparedness; Predictors; Volcano Hazard Perception; Earthquake Hazard Perception; Wildfire Hazard Perception; Emergency Preparedness; Information Seeking

Domain Knowledge-Based Information Retrieval for Engineering Technical Documents

Shang-hsien Hsieh; Ken-yu Lin; Nai-wen Chi; Hsien-tang Lin. (2015). Domain Knowledge-Based Information Retrieval for Engineering Technical Documents. Ontology In The AEC Industry. A Decade Of Research And Development In Architecture, Engineering And Construction, chapter 1.

View Publication

Abstract

Technical documents with complicated structures are often produced in architecture/engineering/construction (AEC) projects and research. Information retrieval (IR) techniques provide a possible solution for managing the ever-growing volume and contexts of the knowledge embedded in these technical documents. However, applying a general-purpose search engine to a domain-specific technical document collection often produces unsatisfactory results. To address this problem, we research the development of a novel IR system based on passage retrieval techniques. The system employs domain knowledge to assist passage partitioning and supports an interactive concept-based expanded IR for technical documents in an engineering field. The engineering domain selected in this case is earthquake engineering, although the technologies developed and employed by the system should be generally applicable to many other engineering domains that use technical documents with similar characteristics. We carry out the research in a three-step process. In the first step, since the final output of this research is an IR system, as a prerequisite, we created a reference collection which includes 111 earthquake engineering technical documents from Taiwan's National Center for Research on Earthquake Engineering. With this collection, the effectiveness of the IR system can be further evaluated onceit is developed. In the second step, the research focuses on creating a base domain ontology using an earthquake-engineering handbook to represent the domain knowledge and to support the target IR system with the knowledge. In step three, the research focuses on the semantic querying and retrieval mechanisms and develops the OntoPassage approach to help with the mechanisms. The OntoPassage approach partitions a document into smaller passages, each with around 300 terms, according to the main concepts in the document. This approach is then used to implement the target domain knowledge-based IR system that allows users to interact with the system and perform concept-based query expansions. The results show that the proposed domain knowledge-based IR system can achieve not only an effective IR but also inform search engine users with a clear knowledge representation.

Keywords

Architecture; Construction; Engineering; Knowledge Based Systems; Ontologies (artificial Intelligence); Query Processing; Search Engines; Knowledge Representation; Concept-based Query Expansions; Base Domain Ontology; Earthquake Engineering; General-purpose Search Engine; Aec Projects; Architecture/engineering/construction Projects; Complicated Structures; Technical Documents; Domain Knowledge-based Information Retrieval