Lindell, Michael K; Jung, Meen Chel; Prater, Carla S; House, Donald H (2023). Evaluation of Hazard Brochures Using Topic Viewing Durations: Application to Tsunami Evacuation Brochures. Risk Analysis.
View Publication
Abstract
This study describes a novel method of assessing risk communication effectiveness by reporting an evaluation of a tsunami information brochure by 90 residents of three Pacific coast communities that are vulnerable to a Cascadia Subduction Zone earthquake and tsunami—Commencement Bay, Washington; Lincoln City, Oregon; and Eureka, California. Study participants viewed information that was presented in DynaSearch, an internet‐based computer system that allowed them to view text boxes and tsunami inundation zone maps. DynaSearch recorded the number of times each text box or map was clicked and the length of time that it was viewed. This information viewing phase was followed by questionnaire pages assessing important aspects of tsunami hazard and sources of tsunami warnings. Participants gave the longest click durations to what to do in the emergency period during earthquake shaking and in its immediate aftermath before a tsunami arrives—topics that should be displayed prominently in tsunami brochures and emphasized in talks to community groups. The smallest adjusted click durations were associated with advance preparations for a tsunami—topics that can be posted on websites whose URLs are printed in the brochures.
Keywords
DynaSearch; hazard awareness brochure; Protective Action Decision Model
Rottle, Nancy, Bowles, Mason, Andrews, Leann, & Engelke, Jennifer (2023). Constructed Floating Wetlands: A “Safe‐to‐Fail” Study with Multi‐sector Participation. Restoration Ecology, 31(1).
View Publication
Abstract
The Duwamish River Floating Wetlands project designed, built, and deployed constructed floating wetlands in the estuary of the urban Duwamish River in Seattle, Washington, during the 2019 and 2020 outmigration seasons for juvenile salmon. Using a “safe‐to‐fail” methodology and adaptive management strategies, these innovative floating wetland prototypes were custom designed to provide the native plants, invertebrates and slow water habitat that juvenile salmon require during their transition from fresh to salt water, and were monitored for these outcomes. This paper will provide insight into the prototype designs, adaptive management strategies and plant performance, and unique public‐private‐academic‐community partnerships that supported 2 years of design and research.
Keywords
community science; cross‐sector collaboration; designed ecosystems; Duwamish River; ecological restoration; green infrastructure
In the United States, flooding is a leading cause of natural disasters, with congressional budget office estimates of $54 billion in loss each year. Although both urban and rural areas are highly vulnerable to flood hazards, most natural disaster resilience studies have focused primarily on urban areas, overlooking rural communities. One such area that has been overlooked are the numerous rural communities bordering the Great Lakes. These communities face unprecedented challenges due to rising water levels, particularly since 2012, which have resulted in increased coastal flood hazard. Despite their flooding risk, they continue to lack flood hazard assessments and inundation maps, exacerbating their vulnerability. The Federal Emergency Management Agency (FEMA) commonly recommend counties to use a freely available tool—called HAZUS to develop hazard mitigation plans and enhance community resilience and adaptation. However, the usage of HAZUS for rural communities is challenging due to existing data gaps that limit the analytical potential of HAZUS in these communities. Continued use of standard datasets for HAZUS analysis by rural counties could likely leave the communities underprepared for future flood events. The proposed project’s vision is to develop methods that use remote sensing data resources and citizen engagement (crowdsourcing) to address current data gaps for improved flood hazard modeling and visualization that is scalable and transferable to rural communities.
The results of the project will expand the traditional frontiers of preparedness and resilience to natural disasters by drawing on the expertise and backgrounds of investigators working at the interface of geological engineering, civil engineering, computer science, marine engineering, urban planning, social science, and remote sensing. Specifically, the proposed research will promote intellectual discovery by i) improving our understanding of remote sensing data sources and open-source processing methods to assist rural communities in addressing the data gaps in flood hazard modeling, ii) developing sustainable geospatial visualization tools for communicating hazards to communities, iii) advancing our understanding of the utility of combining remote sensing and crowdsourcing to flood hazard delineation, iv) understanding ways to incentives the crowd for greater participation and accuracy in hazard in addressing natural disasters, and v) identifying critical community resilience indicators through crowdsourcing. These advancements will lead to prepared and resilient rural communities that can effectively mitigate hazards related to lake level rise and flooding.
While community lifeline service providers and local emergency managers must maintain coordinated response and recovery plans, their timelines may not match expectations of local consumers of lifeline services. Indeed, it is quite likely consumers have unrealistic expectations about lifeline restoration, which could explain current inadequate levels of disaster preparedness. This hypothesized expectation gap has received little attention because engineering research typically addresses providers’ capacities, whereas disaster research addresses household and business preparedness. Our project will address this neglected issue by assessing consumers’ (households, business owners/managers, nonprofit managers) expectations about lifeline system performance, and comparing them to lifeline provider capacity in a post-hazard event scenario (following a Cascadia subduction zone earthquake of 9.0 magnitude or greater) in two communities—Kirkland and Shoreline, WA (likely to experience most shaking in this scenario).
Our research will assess the role of the expectations gap in influencing consumers’ and providers’ preparedness as well as response. First, we estimate the gap between consumers and providers expectations using an earthquake scenario in two case study communities. We posit that low consumer preparedness for lifeline disruption is in part a function of low expectations that lengthy disruption will occur. Next, we test the effect of providing consumers and providers with information about this gap. Our proposed sharing estimates of lifeline restoration times should change these beliefs if our assumption about this specific basis for low preparedness is correct and if our audiences attend to, process, and act upon this information. In our longitudinal research, consumers (households, businesses, and nonprofits) and lifeline providers will complete two questionnaires each. Besides lifeline provider surveys, we will collect information about lifeline providers’ capabilities and work with them to estimate restoration times using an expert elicitation-based estimation framework. We will address the following research questions:
- What do consumers think is the likely level of critical lifeline disruption from an earthquake and the timeline for restoration?
- What are consumers’ current levels of preparedness for lifeline interruption?
- What do lifeline providers and an independent engineering expert think are providers’ capabilities to maintain and restore lifeline services?
- How do consumers’ expectations compare with providers’ capabilities (expectations gap)?
- How will this study’s feedback about the expectations gap affect consumers’ and providers’ lifeline resilience expectations, as well as their mitigation and preparedness intentions?
Chalana, Manish; Wiser, Jeana C. (2013). Integrating Preservation and Hazard Mitigation for Unreinforced Masonry Buildings in Seattle. APT Bulletin: The Journal Of Preservation Technology, 44(2 – 3), 43 – 51.
View Publication
Lindell, Michael K.; Jung, Meen Chel; Prater, Carla S.; House, Donald H. (2022). Improving Cascadia Subduction Zone Residents’ Tsunami Preparedness: Quasi-experimental Evaluation of an Evacuation Brochure. Natural Hazards, 114(1), 849-881.
View Publication
Abstract
This study surveyed 227 residents in three US Pacific Coast communities that are vulnerable to a Cascadia subduction zone tsunami. In the Brochure condition, information was presented online, followed by questions about tsunamis. Respondents in the Comparison condition received the same questionnaire by mail but did not view the brochure. Respondents in the Brochure condition had higher levels of perceived information sufficiency than those in the Comparison condition about three of the five tsunami topics. Both conditions had generally realistic expectations about most tsunami warning sources. However, they had unrealistically high expectations of being warned of a local tsunami by social sources, such as route alerting, that could not be implemented before first wave arrival. They also had unrealistically high expectations being warned of a distant tsunami by ground shaking from the source earthquake, whose epicenter would be too far away for them to feel. Moreover, respondents in both conditions expected higher levels of personal property damage and family casualties than is the case for most hazards, but their levels of negative affective response were not especially high. Overall, only 10% of the sample accessed the tsunami brochure even when sent repeated contacts and the brochure demonstrated modest effects for those who did access it. These results suggest that state and local officials should engage in repeated personalized efforts to increase coastal communities' tsunami emergency preparedness because distribution of tsunami brochures has only a modest effect on preparedness.
Keywords
Subduction Zones; Tsunamis; Emergency Management; Tsunami Warning Systems; Brochures; Preparedness; Communities; Cascadia Subduction Zone Tsunami; Hazard Warnings; Quasi-experiment; Risk Communication; Risk Information-seeking; Natural Warning Signs; Earthquake; Awareness; Responses; Behavior; Model; Wellington; Hazard; Threat; Earthquakes; Casualties; Subduction; Vulnerability; Emergency Preparedness; Emergency Warning Programs; Levels; Seismic Activity; Property Damage; Shaking; Earthquake Damage; Subduction (geology); Disaster Management; Cascadia
El-Anwar, Omar; El-Rayes, Khaled; Elnashai, Amr. (2010). Minimization of Socioeconomic Disruption for Displaced Populations Following Disasters. Disasters, 34(3), 865 – 883.
View Publication
Abstract
In the aftermath of catastrophic natural disasters such as hurricanes, tsunamis and earthquakes, emergency management agencies come under intense pressure to provide temporary housing to address the large-scale displacement of the vulnerable population. Temporary housing is essential to enable displaced families to reestablish their normal daily activities until permanent housing solutions can be provided. Temporary housing decisions, however, have often been criticized for their failure to fulfil the socioeconomic needs of the displaced families within acceptable budgets. This paper presents the development of (1) socioeconomic disruption metrics that are capable of quantifying the socioeconomic impacts of temporary housing decisions on displaced populations; and (2) a robust multi-objective optimization model for temporary housing that is capable of simultaneously minimizing socioeconomic disruptions and public expenditures in an effective and efficient manner. A large-scale application example is optimized to illustrate the use of the model and demonstrate its capabilities ingenerating optimal plans for realistic temporary housing problems.
Keywords
Natural Disasters; Hurricanes; Disaster Relief; Temporary Housing; Tsunamis; Multi-objective Optimization; Post-disaster Recovery; Social Welfare; Socioeconomic Disruption
Lindell, Michael K.; Prater, Carla S.; Wu, Hao Che; Huang, Shih-kai; Johnston, David M.; Becker, Julia S.; Shiroshita, Hideyuki. (2016). Immediate Behavioural Responses To Earthquakes In Christchurch, New Zealand, And Hitachi, Japan. Disasters, 40(1), 85 – 111.
View Publication
Abstract
This study examines people's immediate responses to earthquakes in Christchurch, New Zealand, and Hitachi, Japan. Data collected from 257 respondents in Christchurch and 332 respondents in Hitachi revealed notable similarities between the two cities in people's emotional reactions, risk perceptions, and immediate protective actions during the events. Respondents' physical, household, and social contexts were quite similar, but Hitachi residents reported somewhat higher levels of emotional reaction and risk perception than did Christchurch residents. Contrary to the recommendations of emergency officials, the most frequent response of residents in both cities was to freeze. Christchurch residents were more likely than Hitachi residents to drop to the ground and take cover, whereas Hitachi residents were more likely than Christchurch residents to evacuate immediately the building in which they were situated. There were relatively small correlations between immediate behavioural responses and demographic characteristics, earthquake experience, and physical, social, or household context.
Keywords
Natural Disasters; Risk Perception; Earthquakes; Social Context; Emotions; Christchurch (n.z.); Cross‚Äênational Research; Cross-national Research; Emotional Response; Protective Action; Disaster Victims Speak; Risk; Preparedness; Evacuation; Hazard
Hua, Chunlin; Huang, Shih-Kai; Lindell, Michael K.; Yu, Chin-Hsien. (2020). Rural Households’ Perceptions and Behavior Expectations in Response to Seismic Hazard in Sichuan, China. Safety Science, 125.
View Publication
Abstract
This study analyzed data from 663 rural households in the city of Jiangyou, Sichuan, China to examine the correlations of expectations of taking nine indoor seismic hazard response actions to a hypothetical earthquake with preparedness efforts, risk perceptions, and information reliance. The results indicate that respondents expect to rely on TV and local authorities as their principal sources of earthquake information. Respondents have greater expectations of infrastructure disruptions than property damage and casualties. In addition, they have greater expectations of taking some alternative actions, such as running outside of the building and helping others, than recommended in-place protective actions such as drop, cover, and hold. However, some erroneous actions, such as protecting property and ignoring the threat, are the least likely. Furthermore, regression analyses indicated that risk perceptions, together with some demographic characteristics and earthquake experience, are significant predictors of recommended in-place protective actions and helping others, whereas evacuation is related to higher risk perceptions. Unsurprisingly, respondents having previous seismic damage experience tend to be concerned about property protection and, similarly, those having fewer years of education are more likely to ignore the threat. This study also found that residents expect to rely on different channels to receive information before and after an earthquake. Nonetheless, respondents expect to engage in similar patterns of behavior during and after an earthquake. The results of this study indicate a need for greater dissemination of earthquake information in such rural areas to increase residents' risk perceptions and, in turn, understanding of appropriate emergency responses.
Keywords
Seismic Response; Risk Perception; Households; Sensory Perception; Property Damage; Sichuan Sheng (china); Information Reliance; Protective Actions; Risk Perceptions; Seismic Hazard; Climate-change; Hurricane Evacuation; Earthquake; Preparedness; Adjustment; Education; Injuries; Communication; Intentions
El-Anwar, Omar; El-Rayes, Khaled; Elnashai, Amr S. (2010). Maximizing the Sustainability of Integrated Housing Recovery Efforts. Journal Of Construction Engineering And Management, 136(7), 794 – 802.
View Publication
Abstract
The large-scale and catastrophic impacts of Hurricanes Katrina and Rita in 2005 challenged the efficacy of traditional postdisaster temporary housing methods. To address these challenges, the U.S. Congress appropriated $400 million to the Department of Homeland Security to support alternative housing pilot programs, which encourage innovative housing solutions that will facilitate sustainable and permanent affordable housing in addition to serving as temporary housing. Facilitating and maximizing the sustainability of postdisaster alternative housing is an important objective that has significant social, economic, and environmental impacts. This paper presents the development of a novel optimization model that is capable of (1) evaluating the sustainability of integrated housing recovery efforts under the alternative housing pilot program and (2) identifying the housing projects that maximize sustainability. An application example is analyzed to demonstrate the use of the developed model and its unique capabilities in maximizing the sustainability of integrated housing recovery efforts after natural disasters.
Keywords
Northridge Earthquake; United-states; Disasters; Optimization; Postdisaster Alternative Housing; Sustainability; Housing Recovery