Skip to content

Behavioral Response in the Immediate Aftermath of Shaking: Earthquakes in Christchurch and Wellington, New Zealand, and Hitachi, Japan

Jon, Ihnji; Lindell, Michael K.; Prater, Carla S.; Huang, Shih-kai; Wu, Hao-che; Johnston, David M.; Becker, Julia S.; Shiroshita, Hideyuki; Doyle, Emma E. H.; Potter, Sally H.; Mcclure, John; Lambie, Emily. (2016). Behavioral Response in the Immediate Aftermath of Shaking: Earthquakes in Christchurch and Wellington, New Zealand, and Hitachi, Japan. International Journal Of Environmental Research And Public Health, 13(11).

View Publication

Abstract

This study examines people's response actions in the first 30 min after shaking stopped following earthquakes in Christchurch and Wellington, New Zealand, and Hitachi, Japan. Data collected from 257 respondents in Christchurch, 332 respondents in Hitachi, and 204 respondents in Wellington revealed notable similarities in some response actions immediately after the shaking stopped. In all four events, people were most likely to contact family members and seek additional information about the situation. However, there were notable differences among events in the frequency of resuming previous activities. Actions taken in the first 30 mins were weakly related to: demographic variables, earthquake experience, contextual variables, and actions taken during the shaking, but were significantly related to perceived shaking intensity, risk perception and affective responses to the shaking, and damage/infrastructure disruption. These results have important implications for future research and practice because they identify promising avenues for emergency managers to communicate seismic risks and appropriate responses to risk area populations.

Keywords

Adjustment; Hazard; Model; Earthquakes; Post-impact Response Actions; Risk Perception

Interpretations of Aftershock Advice and Probabilities After the 2013 Cook Strait Earthquakes, Aotearoa New Zealand

Doyle, Emma E. H.; McClure, John; Potter, Sally H.; Lindell, Michael K.; Becker, Julia S.; Fraser, Stuart A.; Johnston, David M. (2020). Interpretations of Aftershock Advice and Probabilities After the 2013 Cook Strait Earthquakes, Aotearoa New Zealand. International Journal Of Disaster Risk Reduction, 49.

View Publication

Abstract

Probabilistic statements can be a valuable tool for natural hazard risk communication, including forecasts. However, individuals often have a poor understanding of such probabilistic forecasts caused by them distorting their interpretations of event likelihoods towards the end of the time window and discounting the risk today. We investigated the use of an 'anchoring' time statement to mitigate this bias via an opportunistic survey run after the 2013 Cook Strait earthquakes, near Wellington, New Zealand. Participants rated their interpretations of likelihoods for an immediate aftershock forecast, and for an earthquake in the future. We explored the influence of aftershock and information concern, emotions and felt shaking, gender and education, as well as preparedness actions. The anchoring time window statement mitigated the skew in interpretations for the short (24 h to within 1 week) aftershock forecast statement. However, the skew still existed for the longer future earthquake forecast (7 days to within 1 year). We also found that heightened sensory experience (felt shaking) or emotional reactions (nervousness, fear, alertness) during the earthquakes was associated with an increase in the perceived likelihoods of future events. Gender was found to significantly influence results, with females rating higher levels of information concern and anxiety, and recording higher perceived likelihoods for the immediate aftershock forecast. Findings, including the importance of 'anchoring' time windows within a forecast to encourage immediate preparedness actions, support recommendations for effective crafting of these forecasts and warnings.

Keywords

False Discovery Rate; Risk Perceptions; Natural Hazards; Communication; Uncertainty; Model; Preparedness; Information; Experiences; Intentions; Likelihood; Probabilities; Forecasts; Earthquakes; Emotions; Concern; Gender; Actions

Rebecca Walter and collaborators awarded pilot grant for their work on PHAs and disaster preparedness

The Population Health Initiative has announced the award of eight Tier 2 pilot grants, which are intended to encourage the development of new interdisciplinary collaborations among investigators – and with community-based partners – for projects that address critical challenges to population health. One of the funded projects, “Assessing National Public Housing Authority Disaster Preparedness, Response and Recovery of Place-based Subsidized Housing Units,” includes Rebecca Walter, Windermere Endowed Chair and Associate Professor, Runstad Department of Real Estate. Walter serves as a…

Ziyang Liu

Research Interests: Urban resilience, disaster risk reduction, climate change, community engagement.

Pranjali Rai

Integration of climate change adaptation in hazard mitigation, planning process, disaster risk reduction, community resilience, and risk assessment and communication

Chin-Wei Chen

Climate change (adaptation & mitigation), climate governance, community-based adaptation actions, disaster risk reduction

Tsunami Vertical Evacuation Project (Project SafeHaven)

Our Washington Pacific Coast is vulnerable to tsunami waves. These waves will wash over coastal communities that do not have ready access to high ground. The Institute for Hazards Mitigation Planning and Research has been working with these at-risk communities at the direction or the State Emergency Management Division to identify locations for vertical tsunami refuges. Currently, the Institute is applying an evacuation model developed by the USGS to corroborated locations suggested by residents. These suggested locations were the product of Institute research conduct over the past 8 years and which lead to the construction of structures in Tokeland and Westport, Washington.

Michael Lindell

Michael K. Lindell has conducted research on emergency preparedness and response for a wide range of natural and technological hazards over the past 40 years. He has conducted research or provided technical services to 40 different organizations in the public and private sectors. He has provided technical assistance on radiological emergency preparedness for the International Atomic Energy Agency, the US Nuclear Regulatory Commission, the Department of Energy, and nuclear utilities and also worked on hazardous materials emergency preparedness with State Emergency Response Commissions, Local Emergency Planning Committees, and chemical companies. He has served eight times as a consultant to National Research Council committees examining environmental hazards, and has been a member of three National Research Council committees—Disasters Research in Social Sciences, Assessing Vulnerabilities Related to the Nation’s Chemical Infrastructure, and Inherently Safer Chemical Processes: The Use of Methyl Isocyanate (MIC) at Bayer CropScience. In addition, he has reviewed research proposals for 20 different foreign, federal, and state agencies as well as performed manuscript reviews for over 75 different journals in the social and environmental sciences and engineering. He has written extensively on emergency management and is the author of 80 technical reports, 125 journal articles and book chapters, and nine books.

Institute for Hazards Mitigation Planning and Research

The Institute for Hazards Mitigation Planning and Research is an interdisciplinary academic institute housed in the College of Built Environments. The Institute is dedicated to exploring ways to enhance Community Resilience, through integration of hazards mitigation principles across all aspects of community development. Its mission is to build a resource center that will enhance risk reduction and resilience activities through research and analysis of hazards, policies related to mitigation, and outreach to the community.

The Institute for Hazards Mitigation Planning and Research is dedicated to integrating hazards mitigation principles into a wide range of crisis, disaster, and risk management opportunities. The Institute provides expertise in disaster preparedness, response, and recovery with a special emphasis on mitigation and planning in the promotion of community sustainability. It is interdisciplinary in focus and structure, and the capabilities of the Institute are enhanced by its close relationship with other academic and research organizations. This incorporates collaboration with several other disciplines within the University of Washington.

The Institute’s faculty and researchers are involved in numerous innovative and path-breaking research initiatives with the ultimate goal of enhancing community capacity to anticipate, respond to, cope with, and recover from natural and man-made hazard events.

Monica Huang

Monica Huang is a research engineer for the Carbon Leadership Forum at the University of Washington with expertise in environmental life cycle assessment (LCA). Recent research topics include the environmental impact of housing, optimizing tall wood structures, and developing data on the environmental impact of earthquake damage. She was also the lead author for a guide on the use of LCA in design and construction practice. Past research experience includes diverse topics such as astronomy, electronic waste, and sea level rise.  As a graduate student, she developed the Port of Seattle’s first study on the impacts of sea level rise on seaport structures.