Skip to content

Urban Driven Phenotypic Changes: Empirical Observations and Theoretical Implications for Eco-Evolutionary Feedback

Alberti, Marina; Marzluff, John; Hunt, Victoria M. (2017). Urban Driven Phenotypic Changes: Empirical Observations and Theoretical Implications for Eco-Evolutionary Feedback. Philosophical Transactions Of The Royal Society Of London. Series B, Biological Sciences, 372(1712).

View Publication

Abstract

Emerging evidence that cities drive micro-evolution raises the question of whether rapid urbanization of Earth might impact ecosystems by causing systemic changes in functional traits that regulate urban ecosystems' productivity and stability. Intraspecific trait variation-variation in organisms' morphological, physiological or behavioural characteristics stemming from genetic variability and phenotypic plasticity-has significant implications for ecological functions such as nutrient cycling and primary productivity. While it is well established that changes in ecological conditions can drive evolutionary change in species' traits that, in turn, can alter ecosystem function, an understanding of the reciprocal and simultaneous processes associated with such interactions is only beginning to emerge. In urban settings, the potential for rapid trait change may be exacerbated by multiple selection pressures operating simultaneously. This paper reviews evidence on mechanisms linking urban development patterns to rapid phenotypic changes, and differentiates phenotypic changes for which there is evidence of micro-evolution versus phenotypic changes which may represent plasticity. Studying how humans mediate phenotypic trait changes through urbanization could shed light on fundamental concepts in ecological and evolutionary theory. It can also contribute to our understanding of eco-evolutionary feedback and provide insights for maintaining ecosystem function over the long term. This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.

Keywords

Peromyscus-leucopus Populations; Rapid Evolution; Urbanization; Biodiversity; Adaptation; Dynamics; Birds; Environment; Mechanisms; Morphology; Eco-evolution; Ecosystem Function; Urban Ecology; Ecosystems; Plastic Properties; Urban Environments; Evolution; Phenotypic Plasticity; Feedback; Urban Development; Biological Evolution; Plasticity; Environmental Impact; Nutrient Cycles; Environmental Changes; Productivity; Human Influences; Ecological Effects; Urban Areas; Genetic Variability; Physical Characteristics

Spatial Relationships between Urban Structures and Air Pollution in Korea

Jung, Meen Chel; Park, Jaewoo; Kim, Sunghwan. (2019). Spatial Relationships between Urban Structures and Air Pollution in Korea. Sustainability, 11(2).

View Publication

Abstract

Urban structures facilitate human activities and interactions but are also a main source of air pollutants; hence, investigating the relationship between urban structures and air pollution is crucial. The lack of an acceptable general model poses significant challenges to investigations on the underlying mechanisms, and this gap fuels our motivation to analyze the relationships between urban structures and the emissions of four air pollutants, including nitrogen oxides, sulfur oxides, and two types of particulate matter, in Korea. We first conduct exploratory data analysis to detect the global and local spatial dependencies of air pollutants and apply Bayesian spatial regression models to examine the spatial relationship between each air pollutant and urban structure covariates. In particular, we use population, commercial area, industrial area, park area, road length, total land surface, and gross regional domestic product per person as spatial covariates of interest. Except for park area and road length, most covariates have significant positive relationships with air pollutants ranging from 0 to 1, which indicates that urbanization does not result in a one-to-one negative influence on air pollution. Findings suggest that the government should consider the degree of urban structures and air pollutants by region to achieve sustainable development.

Keywords

Land-use Regression; Particulate Matter Concentrations; Nitrogen-dioxide; Temporal Variations; Smart City; Quality; Health; Pm10; Fine; Pollutants; Urban Structure; Air Pollution; Moran's I; Bayesian Spatial Model; Motivation; Population; Urbanization; Nitrogen Oxides; Urban Structures; Emissions; Regression Analysis; Regression Models; Sulfur; Spatial Dependencies; Environmental Impact; Outdoor Air Quality; Metropolitan Areas; Economic Growth; Photochemicals; Industrial Areas; Urban Areas; Industrial Plant Emissions; Particulate Emissions; Particulate Matter; Data Analysis; Bayesian Analysis; Sustainable Development; Sulfur Oxides; Regions; Mathematical Models; Cities; China

Do Home Buyers Value the New Urbanist Neighborhood? The Case of Issaquah Highlands, WA

Kim, Jinyhup; Bae, Chang-Hee Christine. (2020). Do Home Buyers Value the New Urbanist Neighborhood? The Case of Issaquah Highlands, WA. Journal Of Urbanism, 13(3), 303 – 324.

View Publication

Abstract

This study compares Issaquah Highlands’ home prices with those of traditional suburban single-family homes in the city of Issaquah. Issaquah Highlands is a community that was developed using New Urbanism principles. The null hypothesis is that the sale prices of houses in Issaquah Highlands are not different from the conventional suburban neighborhood in the city of Issaquah. The principal database consists of US Census Washington State Geospatial Data Archive, and the King County Tax Assessments. The final dataset contains 1,780 single family homes over the seven-year period from 2012 to 2018 based on sale records throughout the city of Issaquah. This study uses the hedonic pricing technique to assess the impact of New Urbanism on the value of single-family residences. The findings suggest that people are willing to pay a $92,700–96,800 premium (approximately 7.1–12.0 percent of the sales prices) for houses in Issaquah Highlands.

Keywords

New Urbanism; Home Prices; Real Property; Sustainable Development; Spatial Analysis (statistics); Hedonic Pricing Model; Property Value; Smart Growth; Spatial Autocorrelation; Neighborhoods; Databases; Taxation; Spatial Data; Suburban Areas; Census; Prices; Housing Prices; Urbanism; Houses; Willingness To Pay; Residential Areas; Null Hypothesis; Cities; Buyers; Hedonism; Sales; Highlands; Tax Assessments

Protecting the Idyll but Not the Environment: Second Homes, Amenity Migration and Rural Exclusion in Washington State

Kondo, Michelle C.; Rivera, Rebeca; Rullman, Stan, Jr. (2012). Protecting the Idyll but Not the Environment: Second Homes, Amenity Migration and Rural Exclusion in Washington State. Landscape And Urban Planning, 106(2), 174 – 182.

View Publication

Abstract

Researchers are beginning to take notice of amenity migration processes and their impacts in exurban areas of the U.S. Our research explores second-home owners as contributors to processes of amenity migration. Using a mixed-method approach combining spatial data and interview analyses, we investigate both the structural and behavioral aspects of amenity migration in San Juan and Okanogan counties of Washington State. Results indicate that second-home owners' desire for privacy and escape is reflected in patterns of spatial isolation among second homes in the study area. These patterns have potentially significant ecological effects. Second-home owners also seek to protect their investments by supporting regulations which support their version of a rural idyll. Therefore, policy-makers should be wary of strategies to promote regulations which promote aesthetic rather than social and ecological function. (C) 2012 Elsevier B.V. All rights reserved.

Keywords

Land-use; Colorado Mountains; Political Ecology; Landscape Change; United-states; Gentrification; Residents; Attitudes; Growth; West; Amenity Migration; Second Homes; Mixed-method Research

Earth as a Hybrid Planet: The Anthropocene in an Evolutionary Astrobiological Context

Frank, Adam; Kleidon, Axel; Alberti, Marina. (2017). Earth as a Hybrid Planet: The Anthropocene in an Evolutionary Astrobiological Context. Anthropocene, 19, 13 – 21.

View Publication

Abstract

We develop a classification scheme for the evolutionary state of planets based on the non-equilibrium thermodynamics of their coupled systems, including the presence of a biosphere and the possibility of what we call an agency-dominated biosphere (i.e. an energy-intensive technological species). The premise is that Earth's entry into the Anthropocene represents what might be, from an astrobiological perspective, a predictable planetary transition. We explore this problem from the perspective of the solar system and exoplanet studies. Our classification discriminates planets by the forms of free energy generation driven from stellar forcing. We then explore how timescales for global evolutionary processes on Earth might be synchronized with ecological transformations driven by increases in energy harvesting and its consequences ( which might have reached a turning point with global urbanization). Finally, we describe quantitatively the classification scheme based on the maintenance of chemical disequilibrium in the past and current Earth systems and on other worlds in the solar system. In this perspective, the beginning of the Anthropocene can be seen as the onset of the hybridization of the planet-a transitional stage from one class of planetary systems interaction to another. For Earth, this stage occurs as the effects of human civilization yield not just new evolutionary pressures, but new selected directions for novel planetary ecosystem functions and their capacity to generate disequilibrium and enhance planetary dissipation.

Keywords

Thermodynamic Disequilibrium; Extrasolar Planets; Climate-change; Life Detection; Habitability; Dynamics; System; Biospheres; Future; Energy; Climate Change; Astrobiology; Coupled Earth Systems; Biosphere; Thermodynamics; Dissipation

Use and Effectiveness of Health Impact Assessment in the Energy and Natural Resources Sector in the United States, 2007 – 2016

Nkyekyer, Esi W.; Dannenberg, Andrew L. (2019). Use and Effectiveness of Health Impact Assessment in the Energy and Natural Resources Sector in the United States, 2007 – 2016. Impact Assessment & Project Appraisal, 37(1), 17 – 32.

View Publication

Abstract

Decisions made in the energy and natural resources sector can affect public health. This report reviews the characteristics and assesses the effectiveness of health impact assessments (HIAs) conducted in this sector. A total of 30 HIAs conducted in 14 states in the United States were identified using a targeted literature search. Five HIAs illustrative of the different source and sub-sector categories, and with identifiable impacts on decision-making processes were selected for review. An existing conceptual framework (Wismar) was used to assess the effectiveness of the five selected HIAs on decision-making related to non-renewable energy, renewable energy, mining, and energy conservation. The 30 HIAs were performed for a variety of projects and assessed health impacts ranging from metabolic disorders to community livability. Eight of the 30 reports were incorporated into environmental impact assessments. All five selected HIAs were generally effective and raised awareness of the health effects of the projects being assessed; four were directly effective and led to changes in final project decisions. Their variable effectiveness may be related to the extent of community engagement and consideration of equity issues, differences in the details and quality of monitoring and evaluation plans devised as part of the HIA process, and whether the outcomes of monitoring and evaluation are reported.

Keywords

Health Impact Assessment; Health Equity; Natural Resources; Environmental Impact Analysis; Power Resources; U.s. States; Energy Conservation; United States; Decision-making Effectiveness; Energy And Natural Resources; Wismar Framework; Horizon Oil-spill; Wind Turbine Noise; Quality-of-life; Environmental-health; Gas Development; Mental-health; Exposure; Vicinity; Hazards; Sleep; Environmental Assessment; Public Health; Metabolic Disorders; Renewable Energy; Monitoring; Decision Making; Evaluation; Environmental Impact; Community Involvement; Environmental Impact Assessment; Renewable Resources; Decisions; Impact Analysis; Mining; United States--us

Mechanical, Electrical, Plumbing and Tenant Improvements over the Building Lifetime: Estimating Material Quantities and Embodied Carbon for Climate Change Mitigation

Rodriguez, Barbara X.; Huang, Monica; Lee, Hyun Woo; Simonen, Kathrina; Ditto, Jim. (2020). Mechanical, Electrical, Plumbing and Tenant Improvements over the Building Lifetime: Estimating Material Quantities and Embodied Carbon for Climate Change Mitigation. Energy And Buildings, 226.

View Publication

Abstract

The building industry is expanding its ability to mitigate the environmental impacts of buildings through the application of life cycle assessment (LCA). Most building LCA studies focus on core and shell (C&S) and rarely assess mechanical, electrical, and plumbing (MEP) and tenant improvements (TI). However, C&S typologies in the commercial sector pose particular challenges to achieving net zero carbon due to the numerous renovations these building undergo through during their service life. MEP and TI are installed multiple times over the lifetime of commercial buildings leading to cumulative environmental impact caused by increasing material quantities and embodied carbon (EC). This study aimed to establish a preliminary range of material quantities and embodied carbon impacts for MEP and TI components, focusing on commercial office buildings in the Pacific Northwest. The first research stage involved quantifying material quantities while a second stage aimed to calculate Embodied Carbon Coefficients (ECC) and LCA impacts using different data sources. The embodied carbon estimates ranged from 40 to 75 kg CO(2)e/m(2) for MEP and 45-135 kg CO(2)e/m(2) for TI. However, with recurring instalments during a life span of 60 years the impacts become comparable to known impacts of core and shell systems. (C) 2020 Elsevier B.V. All rights reserved.

Keywords

Embodied Carbon; Life Cycle Assessment; Tenant Improvement; Mechanical; Electrical And Plumbing

Small-Scale and Extensive Hydrogeomorphic Modification and Water Redistribution in a Desert City and Implications for Regional Nitrogen Removal

Larson, Elisabeth K.; Grimm, Nancy B. (2012). Small-Scale and Extensive Hydrogeomorphic Modification and Water Redistribution in a Desert City and Implications for Regional Nitrogen Removal. Urban Ecosystems, 15(1), 71 – 85.

View Publication

Abstract

There are numerous examples of small-scale hydrogeomorphic manipulations within urban ecosystems. These modifications are motivated both by a need to handle storm drainage and by a human desire for aquatic ecosystems as places for recreation and aesthetics. In the Phoenix Arizona metropolitan area, two examples of these local modifications are artificial lakes and stormwater retention basins. Although lakes are not a natural feature of Sonoran Desert ecosystems, numerous artificial lakes are evident in the region. Retention basins are a common landscaping practice for preventing damage from rare but potentially large storm events. Here we attempt to quantify the heretofore unknown number and extent of these designed aquatic ecosystems and consider their potential impact on hydrologic landscape connectivity and regional nitrogen (N) removal. For lakes, we found that official GIS layers from local and state agencies had significant misclassifications and omissions. We used two published GIS datasets and state impoundment-permit information to determine the number, areal extent, and water source for artificial lakes. We discovered that there are 908-1,390 lakes in the Phoenix area, with the number varying according to level of aggregation. There are no existing GIS data on retention basins, so we employed drywell-permit data to estimate that there may be 10,000 retention basins in the region. Basic data on N stocks in these ecosystems are discussed within the context of the regional N budget. Accurate data on the extent and distribution of these designed ecosystems will be vital for water-resources planning and stormwater management.

Keywords

Urban; Urbanization; Retention; Phoenix

Planning For The Future Of Urban Biodiversity: A Global Review Of City-scale Initiatives.

Nilon, Charles H.; Aronson, Myla F. J.; Cilliers, Sarel S.; Dobbs, Cynnamon; Frazee, Lauren J.; Goddard, Mark A.; O’Neill, Karen M.; Roberts, Debra; Stander, Emilie K.; Werner, Peter; Winter, Marten; Yocom, Ken P. (2017). Planning For The Future Of Urban Biodiversity: A Global Review Of City-scale Initiatives. Bioscience, 67(4), 331 – 341.

View Publication

Abstract

Cities represent considerable opportunities for forwarding global biodiversity and sustainability goals. We developed key attributes for conserving biodiversity and for ecosystem services that should be included in urban-planning documents and reviewed 135 plans from 40 cities globally. The most common attributes in city plans were goals for habitat conservation, air and water quality, cultural ecosystem services, and ecological connectivity. Few plans included quantitative targets. This lack of measurable targets may render plans unsuccessful for an actionable approach to local biodiversity conservation. Although most cities include both biodiversity and ecosystem services, each city tends to focus on one or the other. Comprehensive planning for biodiversity should include the full range of attributes identified, but few cities do this, and the majority that do are mandated by local, regional, or federal governments to plan specifically for biodiversity conservation. This research provides planning recommendations for protecting urban biodiversity based on ecological knowledge.

Keywords

Sustainability; Urban Planning; Urban Biodiversity; Urban Ecology (biology); Water Quality; Air Quality; Biodiversity Conservation; Ecosystem Services; Governance; Policy Regulation; Green Infrastructure; Climate-change; Human Health; Cities; Opportunities; Metaanalysis; Framework; Richness

Environmental Benefits of Using Hybrid CLT Structure in Midrise Non-Residential Construction: An LCA Based Comparative Case Study in the U.S. Pacific Northwest

Pierobon, Francesca; Huang, Monica; Simonen, Kathrina; Ganguly, Indroneil. (2019). Environmental Benefits of Using Hybrid CLT Structure in Midrise Non-Residential Construction: An LCA Based Comparative Case Study in the U.S. Pacific Northwest. Journal Of Building Engineering, 26.

View Publication

Abstract

In this study, the cradle-to-gate environmental impact of a hybrid, mid-rise, cross-laminated timber (CLT) commercial building is evaluated and compared to that of a reinforced concrete building with similar functional characteristics. This study evaluates the embodied emissions and energy associated with building materials, manufacturing, and construction. Two alternative designs are considered for fire protection in the hybrid CLT building: 1) a 'fireproofing design', where gypsum wallboard is applied to the structural wood; and 2) a 'charring design', where two extra layers of CLT are added to the panel. The life cycle environmental impacts are assessed using TRACI 2.1 and the total primary energy is evaluated using the Cumulative Energy Demand impact method. Results show that an average of 26.5% reduction in the global warming potential is achieved in the hybrid CLT building compared to the concrete building, excluding biogenic carbon emissions. Except ozone depletion, where the difference in impact between scenarios is < 1%, replacing fireproofing with charring is beneficial for all impact categories. The embodied energy assessment of the building types reveals that, on average, the total primary energy in the hybrid CLT buildings and concrete building are similar. However, the non-renewable energy (fossil-based) use in the hybrid CLT building is 8% lower compared to that of the concrete building. As compared to the concrete building, additional 1,556 tCO(2)(e) and 2,567 tCO(2e) are stored in the wood components of the building (long-term storage of biogenic carbon) in the scenario with fireproofing and with charring, respectively.

Keywords

Wood; Concrete; Energy; Buildings; Impacts; Cross-laminated Timber; U.s. Pacific Northwest; Life Cycle Assessment; Cumulative Energy Demand; Biogenic Carbon; Carbon Storage